कैलकुलस उदाहरण

2nd次導関数を求める y=x x का प्राकृतिक लघुगणक
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2
के संबंध में का व्युत्पन्न है.
चरण 1.3
घात नियम का उपयोग करके अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
और को मिलाएं.
चरण 1.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.2.2
व्यंजक को फिर से लिखें.
चरण 1.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4
को से गुणा करें.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
के संबंध में का व्युत्पन्न है.
चरण 2.3
और जोड़ें.
चरण 3
व्युत्पन्न ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के रूप में फिर से लिखें.
चरण 3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4
चौथा व्युत्पन्न ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को के रूप में फिर से लिखें.
चरण 4.2.2
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.2.2.2
को से गुणा करें.
चरण 4.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.2.4
को से गुणा करें.
चरण 4.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.2.6
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.6.1
को से गुणा करें.
चरण 4.2.6.2
और जोड़ें.
चरण 4.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4.3.2
और को मिलाएं.