рдХреИрд▓рдХреБрд▓рд╕ рдЙрджрд╛рд╣рд░рдг

微分値を求める - d/dx 8/x का घन मूल
рдЪрд░рдг 1
рдХреЛ рдХреЗ рд░реВрдк рдореЗрдВ рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦрдиреЗ рдХреЗ рд▓рд┐рдП рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░реЗрдВ.
рдЪрд░рдг 2
рдЪреЗрди рд░реВрд▓ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ рдЕрд╡рдХрд▓рди рдХрд░реЗрдВ, рдЬрд┐рд╕рдореЗрдВ рдпрд╣ рд╡рд░реНрдгрди рд╣реЛ рдХрд┐ рд╣реИ, рдЬрд╣рд╛рдБ рдФрд░ рд╣реИ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 2.1
рдЪреЗрди рд░реВрд▓ рд▓рд╛рдЧреВ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП, рдХреЛ рдХреЗ рд░реВрдк рдореЗрдВ рд╕реЗрдЯ рдХрд░реЗрдВ.
рдЪрд░рдг 2.2
рдШрд╛рдд рдирд┐рдпрдо рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ рдЕрд╡рдХрд▓рди рдХрд░реЗрдВ, рдЬрд┐рд╕рдореЗрдВ рдпрд╣ рд╡рд░реНрдгрди рд╣реЛ рдХрд┐ рд╣реИ, рдЬрд╣рд╛рдБ рд╣реИ.
рдЪрд░рдг 2.3
рдХреА рд╕рднреА рдШрдЯрдирд╛рдУрдВ рдХреЛ рд╕реЗ рдмрджрд▓реЗрдВ.
рдЪрд░рдг 3
рдХреЛ рдПрдХ рд╕рд╛рдорд╛рдиреНрдп рднрд╛рдЬрдХ рд╡рд╛рд▓реА рднрд┐рдиреНрди рдХреЗ рд░реВрдк рдореЗрдВ рд▓рд┐рдЦрдиреЗ рдХреЗ рд▓рд┐рдП, рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдЪрд░рдг 4
рдФрд░ рдХреЛ рдорд┐рд▓рд╛рдПрдВ.
рдЪрд░рдг 5
рд╕рд╛рдорд╛рдиреНрдп рднрд╛рдЬрдХ рдкрд░ рдиреНрдпреВрдореЗрд░реЗрдЯрд░реЛрдВ рдХреЛ рдЬреЛрдбрд╝реЗрдВ.
рдЪрд░рдг 6
рдиреНрдпреВрдореЗрд░реЗрдЯрд░ рдХреЛ рд╕рд░рд▓ рдХрд░реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 6.1
рдХреЛ рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдЪрд░рдг 6.2
рдореЗрдВ рд╕реЗ рдШрдЯрд╛рдПрдВ.
рдЪрд░рдг 7
рднрд┐рдиреНрди рдХреЗ рд╕рд╛рдордиреЗ рдЛрдгрд╛рддреНрдордХ рд▓реЗ рдЬрд╛рдПрдБ.
рдЪрд░рдг 8
рдЪреВрдВрдХрд┐ , рдХреЗ рд╕рдВрдмрдВрдз рдореЗрдВ рд╕реНрдерд┐рд░ рд╣реИ, рдХреЗ рд╕рдВрдмрдВрдз рдореЗрдВ рдХрд╛ рд╡реНрдпреБрддреНрдкрдиреНрди рд╣реИ.
рдЪрд░рдг 9
рдиреНрдпреВрдореЗрд░реЗрдЯрд░реЛрдВ рдХреЛ рдЬреЛрдбрд╝реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 9.1
рдФрд░ рдХреЛ рдорд┐рд▓рд╛рдПрдВ.
рдЪрд░рдг 9.2
рдХреЛ рдХреЗ рд░реВрдк рдореЗрдВ рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦреЗрдВ.
рдЪрд░рдг 10
рдШрд╛рдд рдирд┐рдпрдо рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ рдЕрд╡рдХрд▓рди рдХрд░реЗрдВ, рдЬрд┐рд╕рдореЗрдВ рдпрд╣ рд╡рд░реНрдгрди рд╣реЛ рдХрд┐ рд╣реИ, рдЬрд╣рд╛рдБ рд╣реИ.
рдЪрд░рдг 11
рдиреНрдпреВрдореЗрд░реЗрдЯрд░реЛрдВ рдХреЛ рдЬреЛрдбрд╝реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 11.1
рдФрд░ рдХреЛ рдорд┐рд▓рд╛рдПрдВ.
рдЪрд░рдг 11.2
рдЛрдгрд╛рддреНрдордХ рдШрд╛рддрд╛рдВрдХ рдирд┐рдпрдо рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ рдХреЛ рднрд╛рдЬрдХ рдореЗрдВ рд▓реЗ рдЬрд╛рдПрдБ.
рдЪрд░рдг 12
рд╕рд░рд▓ рдХрд░реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 12.1
рдЖрдзрд╛рд░ рдХреЛ рдЙрд╕рдХреЗ рд╡реНрдпреБрддреНрдХреНрд░рдо рдХреЗ рд░реВрдк рдореЗрдВ рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦрдХрд░ рдШрд╛рддрд╛рдВрдХ рдХреЗ рдЪрд┐рд╣реНрди рдХреЛ рдмрджрд▓реЗрдВ.
рдЪрд░рдг 12.2
рдЙрддреНрдкрд╛рдж рдирд┐рдпрдо рдХреЛ рдкрд░ рд▓рд╛рдЧреВ рдХрд░реЗрдВ.
рдЪрд░рдг 12.3
рдкрджреЛрдВ рдХреЛ рдорд┐рд▓рд╛рдПрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 12.3.1
рдХреЛ рдХреЗ рд░реВрдк рдореЗрдВ рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦреЗрдВ.
рдЪрд░рдг 12.3.2
рдШрд╛рдд рдирд┐рдпрдо рд▓рд╛рдЧреВ рдХрд░реЗрдВ рдФрд░ рдШрд╛рддрд╛рдВрдХ рдЧреБрдгрд╛ рдХрд░реЗрдВ, .
рдЪрд░рдг 12.3.3
рдХрд╛ рдЙрднрдпрдирд┐рд╖реНрда рдЧреБрдгрдирдЦрдВрдб рд░рджреНрдж рдХрд░реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 12.3.3.1
рдЙрднрдпрдирд┐рд╖реНрда рдЧреБрдгрдирдЦрдВрдб рд░рджреНрдж рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.3.2
рд╡реНрдпрдВрдЬрдХ рдХреЛ рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦреЗрдВ.
рдЪрд░рдг 12.3.4
рдХреЛ рдХреЗ рдШрд╛рдд рддрдХ рдмрдврд╝рд╛рдПрдВ.
рдЪрд░рдг 12.3.5
рдХреЛ рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.6
рдХреЛ рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.7
рдХреЛ рдХреЗ рдмрд╛рдИрдВ рдУрд░ рд▓реЗ рдЬрд╛рдПрдВ.
рдЪрд░рдг 12.3.8
рдЛрдгрд╛рддреНрдордХ рдШрд╛рддрд╛рдВрдХ рдирд┐рдпрдо рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ рдХреЛ рднрд╛рдЬрдХ рдореЗрдВ рд▓реЗ рдЬрд╛рдПрдБ.
рдЪрд░рдг 12.3.9
рдШрд╛рддрд╛рдВрдХ рдЬреЛрдбрд╝рдХрд░ рдХреЛ рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 12.3.9.1
рд▓реЗ рдЬрд╛рдПрдВ.
рдЪрд░рдг 12.3.9.2
рдШрд╛рддрд╛рдВрдХреЛрдВ рдХреЛ рд╕рдВрдпреЛрдЬрд┐рдд рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдШрд╛рдд рдирд┐рдпрдо рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.9.3
рдХреЛ рдПрдХ рд╕рд╛рдорд╛рдиреНрдп рднрд╛рдЬрдХ рд╡рд╛рд▓реА рднрд┐рдиреНрди рдХреЗ рд░реВрдк рдореЗрдВ рд▓рд┐рдЦрдиреЗ рдХреЗ рд▓рд┐рдП, рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.9.4
рдФрд░ рдХреЛ рдорд┐рд▓рд╛рдПрдВ.
рдЪрд░рдг 12.3.9.5
рд╕рд╛рдорд╛рдиреНрдп рднрд╛рдЬрдХ рдкрд░ рдиреНрдпреВрдореЗрд░реЗрдЯрд░реЛрдВ рдХреЛ рдЬреЛрдбрд╝реЗрдВ.
рдЪрд░рдг 12.3.9.6
рдиреНрдпреВрдореЗрд░реЗрдЯрд░ рдХреЛ рд╕рд░рд▓ рдХрд░реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 12.3.9.6.1
рдХреЛ рд╕реЗ рдЧреБрдгрд╛ рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.9.6.2
рдФрд░ рдЬреЛрдбрд╝реЗрдВ.
рдЪрд░рдг 12.3.10
рдореЗрдВ рд╕реЗ рдХрд╛ рдЧреБрдгрдирдЦрдВрдб рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.11
рдЙрднрдпрдирд┐рд╖реНрда рдЧреБрдгрдирдЦрдВрдбреЛрдВ рдХреЛ рд░рджреНрдж рдХрд░реЗрдВ.
рдФрд░ рд╕реНрдЯреЗрдкреНрд╕ рдХреЗ рд▓рд┐рдП рдЯреИрдк рдХрд░реЗрдВтАж
рдЪрд░рдг 12.3.11.1
рдореЗрдВ рд╕реЗ рдХрд╛ рдЧреБрдгрдирдЦрдВрдб рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.11.2
рдЙрднрдпрдирд┐рд╖реНрда рдЧреБрдгрдирдЦрдВрдб рд░рджреНрдж рдХрд░реЗрдВ.
рдЪрд░рдг 12.3.11.3
рд╡реНрдпрдВрдЬрдХ рдХреЛ рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦреЗрдВ.