कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=-(sin(x+5))/y
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 1.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
में से का गुणनखंड करें.
चरण 1.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.3
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
को अवकलित करें.
चरण 2.3.2.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.2.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.2.1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2.1.5
और जोड़ें.
चरण 2.3.2.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.3
के संबंध में का इंटीग्रल है.
चरण 2.3.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.1
सरल करें.
चरण 2.3.4.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.2.1
को से गुणा करें.
चरण 2.3.4.2.2
को से गुणा करें.
चरण 2.3.5
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 3.2
समीकरण के दोनों पक्षों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.1
और को मिलाएं.
चरण 3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
वितरण गुणधर्म लागू करें.
चरण 3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.4
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
में से का गुणनखंड करें.
चरण 3.4.2
में से का गुणनखंड करें.
चरण 3.4.3
में से का गुणनखंड करें.
चरण 3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.