कैलकुलस उदाहरण

सीमा का मूल्यांकन करें (cos(x)-sin(x))/(1-2sin(x)^2) का लिमिट, जब x pi/4 की ओर एप्रोच करता हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.2
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.1.2.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.1.2.4
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.4.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.4.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.5
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.5.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.5.1.1
का सटीक मान है.
चरण 1.1.2.5.1.2
का सटीक मान है.
चरण 1.1.2.5.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.1.2.5.3
में से घटाएं.
चरण 1.1.2.5.4
को से विभाजित करें.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.1.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.1.3.1.4
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.1.3.1.5
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
कोज्या दोहरा कोण सर्वसमिका लागू करें.
चरण 1.1.3.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.2.1
में से का गुणनखंड करें.
चरण 1.1.3.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.3.3.2.3
व्यंजक को फिर से लिखें.
चरण 1.1.3.3.3
का सटीक मान है.
चरण 1.1.3.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
के संबंध में का व्युत्पन्न है.
चरण 1.3.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.5
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.7
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.7.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.7.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.7.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3.7.3
के संबंध में का व्युत्पन्न है.
चरण 1.3.7.4
को से गुणा करें.
चरण 1.3.8
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.8.1
में से घटाएं.
चरण 1.3.8.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 2
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 2.5
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 2.6
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.7
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 2.8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 3
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
में से का गुणनखंड करें.
चरण 4.2.2
का सटीक मान है.
चरण 4.2.3
का सटीक मान है.
चरण 4.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.2.5
को गुणनखंड रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.1
और जोड़ें.
चरण 4.2.5.2
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.2.1
उभयनिष्ठ गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.5.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.5.2.1.2
व्यंजक को फिर से लिखें.
चरण 4.2.5.2.2
को से विभाजित करें.
चरण 4.3
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
का सटीक मान है.
चरण 4.3.2
का सटीक मान है.
चरण 4.4
को से गुणा करें.
चरण 4.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
को के घात तक बढ़ाएं.
चरण 4.5.2
को के घात तक बढ़ाएं.
चरण 4.5.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.5.4
और जोड़ें.
चरण 4.6
को से गुणा करें.
चरण 4.7
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 4.7.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.7.3
और को मिलाएं.
चरण 4.7.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.7.4.2
व्यंजक को फिर से लिखें.
चरण 4.7.5
घातांक का मान ज्ञात करें.
चरण 4.8
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.8.1
में से का गुणनखंड करें.
चरण 4.8.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.8.2.1
में से का गुणनखंड करें.
चरण 4.8.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.8.2.3
व्यंजक को फिर से लिखें.
चरण 4.9
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 4.10
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.10.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 4.10.2
में से का गुणनखंड करें.
चरण 4.10.3
में से का गुणनखंड करें.
चरण 4.10.4
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.10.5
व्यंजक को फिर से लिखें.
चरण 4.11
और को मिलाएं.
चरण 4.12
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.13
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.13.1
को से गुणा करें.
चरण 4.13.2
को से गुणा करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: