समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3
बाईं ओर की सीमा पर विचार करें.
चरण 4
फलन के व्यवहार को दिखाने के लिए एक तालिका बनाएंं क्योंकि बाईं ओर से की ओर आ रहा है.
चरण 5
का मान की ओर एप्रोच करती हैं, फलन मान की ओर एप्रोच करती हैं. इस प्रकार, का लिमिट के रूप में के बाईं ओर से ओर एप्रोच करती है है.
चरण 6
दाईं ओर की सीमा पर विचार करें.
चरण 7
फलन के व्यवहार को दिखाने के लिए एक तालिका बनाएंं क्योंकि दाईं ओर से की ओर आ रहा है.
चरण 8
का मान की ओर एप्रोच करती हैं, फलन मान की ओर एप्रोच करती हैं. इस प्रकार, का लिमिट के रूप में के दाईं ओर से ओर एप्रोच करती है है.
चरण 9
चरण 9.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.1
में से का गुणनखंड करें.
चरण 9.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.3
व्यंजक को फिर से लिखें.
चरण 9.2
को से गुणा करें.
चरण 9.3
और को मिलाएं.
चरण 9.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 9.4.1
में से का गुणनखंड करें.
चरण 9.4.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 9.4.2.1
में से का गुणनखंड करें.
चरण 9.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.4.2.3
व्यंजक को फिर से लिखें.
चरण 9.5
का सटीक मान है.
चरण 10
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: