समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 1.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.4
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 1.5
के गुणनखंड और हैं.
चरण 1.6
के गुणनखंड और हैं.
चरण 1.7
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 1.8
गुणा करें.
चरण 1.8.1
को से गुणा करें.
चरण 1.8.2
को से गुणा करें.
चरण 1.9
का गुणनखंड ही है.
बार आता है.
चरण 1.10
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 1.11
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 2
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
प्रत्येक पद को सरल करें.
चरण 2.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.1.2
में से का गुणनखंड करें.
चरण 2.2.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.4
व्यंजक को फिर से लिखें.
चरण 2.2.1.2
को से गुणा करें.
चरण 2.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.3.2
में से का गुणनखंड करें.
चरण 2.2.1.3.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.4
व्यंजक को फिर से लिखें.
चरण 2.2.1.4
को से गुणा करें.
चरण 2.2.2
में से घटाएं.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.3.1.2
में से का गुणनखंड करें.
चरण 2.3.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.4
व्यंजक को फिर से लिखें.
चरण 2.3.2
को से गुणा करें.
चरण 3
चरण 3.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2.2
बाईं ओर को सरल बनाएंं.
चरण 3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.2
को से विभाजित करें.
चरण 3.2.3
दाईं ओर को सरल बनाएंं.
चरण 3.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
मिश्रित संख्या रूप: