समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
को एक समीकरण के रूप में लिखें.
चरण 2
चर को एकदूसरे के साथ बदलें.
चरण 3
चरण 3.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.3.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.3.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.2.1.2
को से विभाजित करें.
चरण 3.3.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.3.3.1
प्रत्येक पद को सरल करें.
चरण 3.3.3.3.1.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.3.3.3.1.2
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.3.4
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.3.5
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3.6
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.3.6.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.3.6.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.6.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.6.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.6.2.1.2
को से विभाजित करें.
चरण 3.3.6.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.6.3.1
प्रत्येक पद को सरल करें.
चरण 3.3.6.3.1.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.3.6.3.1.2
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.3.7
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
Replace with to show the final answer.
चरण 5
चरण 5.1
व्युत्क्रम का डोमेन मूल फंक्शन का परास और इसके विपरीत है. और का डोमेन और परास ज्ञात करें और उनकी तुलना करें.
चरण 5.2
की सीमा ज्ञात करें.
चरण 5.2.1
श्रेणी सभी मान्य मानों का सेट है. परिसर पता करने के लिए ग्राफ का प्रयोग करें.
मध्यवर्ती संकेतन:
चरण 5.3
का डोमेन ज्ञात करें.
चरण 5.3.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 5.3.2
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 5.4
का डोमेन ज्ञात करें.
चरण 5.4.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 5.5
चूँकि का डोमेन का परास है और का डोमेन का डोमेन है, तो , का व्युत्क्रम है.
चरण 6