एलजेब्रा उदाहरण

x और y प्रतिच्छेद ज्ञात करें f(x)=3|x+4|-4
चरण 1
x- अंत:खंड ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
x- अंत:खंड(अंत:खंडों) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 1.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण को के रूप में फिर से लिखें.
चरण 1.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.1.2
को से विभाजित करें.
चरण 1.2.4
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 1.2.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.2.5.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.5.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2.5.2.3
और को मिलाएं.
चरण 1.2.5.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.2.5.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.2.5.1
को से गुणा करें.
चरण 1.2.5.2.5.2
में से घटाएं.
चरण 1.2.5.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2.5.3
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.2.5.4
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.4.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.5.4.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2.5.4.3
और को मिलाएं.
चरण 1.2.5.4.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.2.5.4.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.4.5.1
को से गुणा करें.
चरण 1.2.5.4.5.2
में से घटाएं.
चरण 1.2.5.4.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2.5.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 1.3
x- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
x- अंत:खंड(अंत:खंडों):
x- अंत:खंड(अंत:खंडों):
चरण 2
y- अंत:खंड पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
y- अंत:खंड (ओं) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
और जोड़ें.
चरण 2.2.1.2
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 2.2.1.3
को से गुणा करें.
चरण 2.2.2
में से घटाएं.
चरण 2.3
y- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
y- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 3
प्रतिच्छेदनों को सूचीबद्ध करें.
x- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 4