समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
चरण 1.1
दूसरा व्युत्पन्न पता करें.
चरण 1.1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.1.1.2
अवकलन करें.
चरण 1.1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2.4
न्यूमेरेटरों को जोड़ें.
चरण 1.1.1.2.4.1
और जोड़ें.
चरण 1.1.1.2.4.2
और को मिलाएं.
चरण 1.1.1.2.4.3
और को मिलाएं.
चरण 1.1.2
दूसरा व्युत्पन्न पता करें.
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2.3
अवकलन करें.
चरण 1.1.2.3.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3.2
को से गुणा करें.
चरण 1.1.2.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3.6
व्यंजक को सरल बनाएंं.
चरण 1.1.2.3.6.1
और जोड़ें.
चरण 1.1.2.3.6.2
को से गुणा करें.
चरण 1.1.2.4
को के घात तक बढ़ाएं.
चरण 1.1.2.5
को के घात तक बढ़ाएं.
चरण 1.1.2.6
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.2.7
और जोड़ें.
चरण 1.1.2.8
में से घटाएं.
चरण 1.1.2.9
और को मिलाएं.
चरण 1.1.2.10
सरल करें.
चरण 1.1.2.10.1
वितरण गुणधर्म लागू करें.
चरण 1.1.2.10.2
प्रत्येक पद को सरल करें.
चरण 1.1.2.10.2.1
को से गुणा करें.
चरण 1.1.2.10.2.2
को से गुणा करें.
चरण 1.1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 1.2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
चरण 1.2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 1.2.3
के लिए समीकरण को हल करें.
चरण 1.2.3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.3.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 1.2.3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.3.2.2
बाईं ओर को सरल बनाएंं.
चरण 1.2.3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.2.1.2
को से विभाजित करें.
चरण 1.2.3.2.3
दाईं ओर को सरल बनाएंं.
चरण 1.2.3.2.3.1
को से विभाजित करें.
चरण 1.2.3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.2.3.4
का कोई भी मूल होता है.
चरण 1.2.3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 1.2.3.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.2.3.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.2.3.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2
चरण 2.1
यह पता लगाने के लिए कि व्यंजक कहाँ परिभाषित है, तर्क को से बड़ा में सेट करें.
चरण 2.2
के लिए हल करें.
चरण 2.2.1
असमानता के दोनों पक्षों से घटाएं.
चरण 2.2.2
चूंकि बाईं ओर सम घात है, यह सभी वास्तविक संख्याओं के लिए सदैव धनात्मक होता है.
सभी वास्तविक संख्या
सभी वास्तविक संख्या
चरण 2.3
डोमेन सभी वास्तविक संख्याएं हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 3
-मानों के आसपास अंतराल करें जहां दूसरा व्युत्पन्न शून्य या अपरिभाषित हो.
चरण 4
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
चरण 4.2.1
न्यूमेरेटर को सरल करें.
चरण 4.2.1.1
को के घात तक बढ़ाएं.
चरण 4.2.1.2
को से गुणा करें.
चरण 4.2.1.3
और जोड़ें.
चरण 4.2.2
भाजक को सरल करें.
चरण 4.2.2.1
को के घात तक बढ़ाएं.
चरण 4.2.2.2
और जोड़ें.
चरण 4.2.2.3
को के घात तक बढ़ाएं.
चरण 4.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2.4
अंतिम उत्तर है.
चरण 4.3
अंतराल पर ग्राफ अवतल नीचे है क्योंकि ऋणात्मक है.
पर अवतल नीचे है क्योंकि ऋणात्मक है
पर अवतल नीचे है क्योंकि ऋणात्मक है
चरण 5
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
चरण 5.2.1
न्यूमेरेटर को सरल करें.
चरण 5.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 5.2.1.2
को से गुणा करें.
चरण 5.2.1.3
और जोड़ें.
चरण 5.2.2
भाजक को सरल करें.
चरण 5.2.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 5.2.2.2
और जोड़ें.
चरण 5.2.2.3
एक का कोई भी घात एक होता है.
चरण 5.2.3
को से विभाजित करें.
चरण 5.2.4
अंतिम उत्तर है.
चरण 5.3
अंतराल पर ग्राफ अवतल ऊपर है क्योंकि धनात्मक है.
को अवतल ऊपर है क्योंकि धनात्मक है
को अवतल ऊपर है क्योंकि धनात्मक है
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
न्यूमेरेटर को सरल करें.
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
और जोड़ें.
चरण 6.2.2
भाजक को सरल करें.
चरण 6.2.2.1
को के घात तक बढ़ाएं.
चरण 6.2.2.2
और जोड़ें.
चरण 6.2.2.3
को के घात तक बढ़ाएं.
चरण 6.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.4
अंतिम उत्तर है.
चरण 6.3
अंतराल पर ग्राफ अवतल नीचे है क्योंकि ऋणात्मक है.
पर अवतल नीचे है क्योंकि ऋणात्मक है
पर अवतल नीचे है क्योंकि ऋणात्मक है
चरण 7
जब दूसरा व्युत्पन्न ऋणात्मक होता है तो ग्राफ अवतल नीचे होता है और दूसरा व्युत्पन्न धनात्मक होने पर अवतल ऊपर होता है.
पर अवतल नीचे है क्योंकि ऋणात्मक है
को अवतल ऊपर है क्योंकि धनात्मक है
पर अवतल नीचे है क्योंकि ऋणात्मक है
चरण 8