एलजेब्रा उदाहरण

LCD ज्ञात करें (3a^2)/(a^2+a+1)(2a)/(a-1)(a^3)/(a^3-1)
चरण 1
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को के रूप में फिर से लिखें.
चरण 1.2
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के अंतर का उपयोग करने वाले गुणनखंड जहाँ और हैं.
चरण 1.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
को से गुणा करें.
चरण 1.3.2
एक का कोई भी घात एक होता है.
चरण 2
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 6
का गुणनखंड ही है.
बार आता है.
चरण 7
का गुणनखंड ही है.
बार आता है.
चरण 8
का गुणनखंड ही है.
बार आता है.
चरण 9
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.