एलजेब्रा उदाहरण

द्विघात सूत्र का उपयोग कर हल करें x+10=3(x-1)^2
चरण 1
सभी पदों को समीकरण के बाईं ओर ले जाएँ और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
को के रूप में फिर से लिखें.
चरण 1.1.1.2
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.2.1
वितरण गुणधर्म लागू करें.
चरण 1.1.1.2.2
वितरण गुणधर्म लागू करें.
चरण 1.1.1.2.3
वितरण गुणधर्म लागू करें.
चरण 1.1.1.3
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.3.1.1
को से गुणा करें.
चरण 1.1.1.3.1.2
को के बाईं ओर ले जाएं.
चरण 1.1.1.3.1.3
को के रूप में फिर से लिखें.
चरण 1.1.1.3.1.4
को के रूप में फिर से लिखें.
चरण 1.1.1.3.1.5
को से गुणा करें.
चरण 1.1.1.3.2
में से घटाएं.
चरण 1.1.1.4
वितरण गुणधर्म लागू करें.
चरण 1.1.1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.5.1
को से गुणा करें.
चरण 1.1.1.5.2
को से गुणा करें.
चरण 1.2
सभी अभिव्यक्तियों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
और जोड़ें.
चरण 1.3.2
में से घटाएं.
चरण 2
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 3
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को के घात तक बढ़ाएं.
चरण 4.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
को से गुणा करें.
चरण 4.1.2.2
को से गुणा करें.
चरण 4.1.3
और जोड़ें.
चरण 4.2
को से गुणा करें.
चरण 4.3
को सरल करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: