एलजेब्रा उदाहरण

सरल कीजिए ((x^2-4)/(x^3+7x^2))/((x^3-x^2-6x)/(x^2+4x-21))
चरण 1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को के रूप में फिर से लिखें.
चरण 2.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
में से का गुणनखंड करें.
चरण 3.2
में से का गुणनखंड करें.
चरण 3.3
में से का गुणनखंड करें.
चरण 4
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 4.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 5
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
में से का गुणनखंड करें.
चरण 5.1.2
में से का गुणनखंड करें.
चरण 5.1.3
में से का गुणनखंड करें.
चरण 5.1.4
में से का गुणनखंड करें.
चरण 5.1.5
में से का गुणनखंड करें.
चरण 5.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 5.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 6
जोड़ना.
चरण 7
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
ले जाएं.
चरण 7.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
को के घात तक बढ़ाएं.
चरण 7.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 7.3
और जोड़ें.
चरण 8
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.2
व्यंजक को फिर से लिखें.
चरण 9
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2
व्यंजक को फिर से लिखें.
चरण 10
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2
व्यंजक को फिर से लिखें.