समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 2
चरण 2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2
को से विभाजित करें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
को से विभाजित करें.
चरण 3
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4
चरण 4.1
में से का गुणनखंड करें.
चरण 4.1.1
में से का गुणनखंड करें.
चरण 4.1.2
में से का गुणनखंड करें.
चरण 4.1.3
में से का गुणनखंड करें.
चरण 4.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.3
को के बराबर सेट करें.
चरण 4.4
को के बराबर सेट करें और के लिए हल करें.
चरण 4.4.1
को के बराबर सेट करें.
चरण 4.4.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 5
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6
चरण 6.1
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 6.2
के लिए समीकरण को हल करें.
चरण 6.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 6.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 6.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 6.2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 6.2.3
को के बराबर सेट करें और के लिए हल करें.
चरण 6.2.3.1
को के बराबर सेट करें.
चरण 6.2.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6.2.4
को के बराबर सेट करें और के लिए हल करें.
चरण 6.2.4.1
को के बराबर सेट करें.
चरण 6.2.4.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 6.2.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6.3
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.
चरण 7
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 8