एलजेब्रा उदाहरण

चरण 1
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
कोष्ठक हटा दें.
चरण 1.3
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
वितरण गुणधर्म लागू करें.
चरण 2.2.1.2
को से गुणा करें.
चरण 2.2.1.3
को के बाईं ओर ले जाएं.
चरण 2.2.1.4
को के रूप में फिर से लिखें.
चरण 2.2.1.5
वितरण गुणधर्म लागू करें.
चरण 2.2.1.6
को से गुणा करें.
चरण 2.2.1.7
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.7.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.7.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.7.3
व्यंजक को फिर से लिखें.
चरण 2.2.2
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
और जोड़ें.
चरण 2.2.2.2
में से घटाएं.
चरण 2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
वितरण गुणधर्म लागू करें.
चरण 2.3.2
को से गुणा करें.
चरण 3
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.1.2
में से घटाएं.
चरण 3.2
सभी पदों को समीकरण के बाईं ओर ले जाएँ और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.2
और जोड़ें.
चरण 3.3
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 3.4
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 3.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1.1
को के घात तक बढ़ाएं.
चरण 3.5.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1.2.1
को से गुणा करें.
चरण 3.5.1.2.2
को से गुणा करें.
चरण 3.5.1.3
और जोड़ें.
चरण 3.5.2
को से गुणा करें.
चरण 3.6
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: