एलजेब्रा उदाहरण

xを解きます (x-3)^2+(x+1)^2=(x-2)^2+(x+3)^2
चरण 1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पदों को फिर से समूहित करें.
चरण 2.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
और जोड़ें.
चरण 2.3.2
और जोड़ें.
चरण 2.3.3
और जोड़ें.
चरण 2.3.4
वितरण गुणधर्म लागू करें.
चरण 2.3.5
को से गुणा करें.
चरण 2.3.6
में से घटाएं.
चरण 2.3.7
में से घटाएं.
चरण 2.3.8
में से घटाएं.
चरण 2.3.9
को से गुणा करें.
चरण 2.4
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
और जोड़ें.
चरण 2.5.2
में से घटाएं.
चरण 2.5.3
वितरण गुणधर्म लागू करें.
चरण 2.5.4
को से गुणा करें.
चरण 2.5.5
में से घटाएं.
चरण 2.5.6
और जोड़ें.
चरण 2.5.7
और जोड़ें.
चरण 2.6
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
में से का गुणनखंड करें.
चरण 2.6.2
में से का गुणनखंड करें.
चरण 2.6.3
में से का गुणनखंड करें.
चरण 2.7
और जोड़ें.
चरण 3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2
को से विभाजित करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को से विभाजित करें.
चरण 4
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.2.1.2
को से विभाजित करें.
चरण 5.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: