एलजेब्रा उदाहरण

wを解きます 2w^2- के लघुगणक बेस 2 w+3=3 के लघुगणक बेस 2
चरण 1
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3
भिन्न को हटाने के लिए क्रॉस गुणा करें.
चरण 4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के घात तक बढ़ाएं.
चरण 4.2
वितरण गुणधर्म लागू करें.
चरण 4.3
को से गुणा करें.
चरण 5
समीकरण के दोनों पक्षों से घटाएं.
चरण 6
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
में से का गुणनखंड करें.
चरण 6.2
में से का गुणनखंड करें.
चरण 6.3
में से का गुणनखंड करें.
चरण 7
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
के प्रत्येक पद को से विभाजित करें.
चरण 7.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.2
को से विभाजित करें.
चरण 7.2.2
वितरण गुणधर्म लागू करें.
चरण 7.2.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.3.1
को से गुणा करें.
चरण 7.2.3.2
को के बाईं ओर ले जाएं.
चरण 7.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1
को से विभाजित करें.
चरण 8
समीकरण के दोनों पक्षों से घटाएं.
चरण 9
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 9.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 10
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 11
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
को के बराबर सेट करें.
चरण 11.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 12
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
को के बराबर सेट करें.
चरण 12.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 13
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.