एलजेब्रा उदाहरण

xについて不等式を解く -1/2x^2+4x<=1
चरण 1
और को मिलाएं.
चरण 2
असमानता के दोनों पक्षों से घटाएं.
चरण 3
लघुत्तम सामान्य भाजक से गुणा करें, और फिर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
वितरण गुणधर्म लागू करें.
चरण 3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.3
व्यंजक को फिर से लिखें.
चरण 3.2.2
को से गुणा करें.
चरण 3.2.3
को से गुणा करें.
चरण 4
असमानता को समीकरण में बदलें.
चरण 5
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 6
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 7
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1.1
को के घात तक बढ़ाएं.
चरण 7.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1.2.1
को से गुणा करें.
चरण 7.1.2.2
को से गुणा करें.
चरण 7.1.3
में से घटाएं.
चरण 7.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 7.1.4.1
में से का गुणनखंड करें.
चरण 7.1.4.2
को के रूप में फिर से लिखें.
चरण 7.1.5
करणी से पदों को बाहर निकालें.
चरण 7.2
को से गुणा करें.
चरण 7.3
को सरल करें.
चरण 8
हल समेकित करें.
चरण 9
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 10
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.1.2
मूल असमानता में को से बदलें.
चरण 10.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 10.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.2.2
मूल असमानता में को से बदलें.
चरण 10.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 10.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.3.2
मूल असमानता में को से बदलें.
चरण 10.3.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 10.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
गलत
सही
सही
गलत
सही
चरण 11
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 12
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 13