समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
को एक समीकरण के रूप में लिखें.
चरण 2
चर को एकदूसरे के साथ बदलें.
चरण 3
चरण 3.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 3.4
समीकरण के दोनों पक्षों को सरल करें.
चरण 3.4.1
बाईं ओर को सरल बनाएंं.
चरण 3.4.1.1
को सरल करें.
चरण 3.4.1.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.4.1.1.1.2
में से का गुणनखंड करें.
चरण 3.4.1.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1.1.1.4
व्यंजक को फिर से लिखें.
चरण 3.4.1.1.2
गुणा करें.
चरण 3.4.1.1.2.1
को से गुणा करें.
चरण 3.4.1.1.2.2
को से गुणा करें.
चरण 3.4.2
दाईं ओर को सरल बनाएंं.
चरण 3.4.2.1
को सरल करें.
चरण 3.4.2.1.1
वितरण गुणधर्म लागू करें.
चरण 3.4.2.1.2
को से गुणा करें.
चरण 3.5
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.6
को सरल करें.
चरण 3.6.1
में से का गुणनखंड करें.
चरण 3.6.1.1
में से का गुणनखंड करें.
चरण 3.6.1.2
में से का गुणनखंड करें.
चरण 3.6.1.3
में से का गुणनखंड करें.
चरण 3.6.2
को के रूप में फिर से लिखें.
चरण 3.6.3
करणी से पदों को बाहर निकालें.
चरण 3.7
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.7.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.7.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.7.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
अंतिम उत्तर दिखाने के लिए को से बदलें.
चरण 5
चरण 5.1
व्युत्क्रम का डोमेन मूल फंक्शन का परास और इसके विपरीत है. और का डोमेन और परास ज्ञात करें और उनकी तुलना करें.
चरण 5.2
की सीमा ज्ञात करें.
चरण 5.2.1
श्रेणी सभी मान्य मानों का सेट है. परिसर पता करने के लिए ग्राफ का प्रयोग करें.
मध्यवर्ती संकेतन:
चरण 5.3
का डोमेन ज्ञात करें.
चरण 5.3.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 5.3.2
के लिए हल करें.
चरण 5.3.2.1
असमानता के दोनों पक्षों से घटाएं.
चरण 5.3.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.3.2.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 5.3.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.3.2.2.2.2
को से विभाजित करें.
चरण 5.3.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.2.2.3.1
को से विभाजित करें.
चरण 5.3.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 5.4
का डोमेन ज्ञात करें.
चरण 5.4.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 5.5
चूँकि का डोमेन का परास है और का डोमेन का डोमेन है, तो , का व्युत्क्रम है.
चरण 6