एलजेब्रा उदाहरण

xを解きます arccot( x)+arctan(x)=pi/2 का वर्गमूल
चरण 1
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
समीकरण को के रूप में फिर से लिखें.
चरण 1.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.4.2.2
को से विभाजित करें.
चरण 1.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.1.1
ऋणात्मक को के भाजक से हटा दें.
चरण 1.4.3.1.2
को के रूप में फिर से लिखें.
चरण 1.4.3.1.3
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.4.3.1.4
को से विभाजित करें.
चरण 1.5
चाप स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों का व्युत्क्रम चाप स्पर्शरेखा लें.
चरण 1.6
समीकरण को के रूप में फिर से लिखें.
चरण 1.7
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 1.8
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.9
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.9.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.9.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.9.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.9.2.2
को से विभाजित करें.
चरण 1.9.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.9.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.9.3.1.1
ऋणात्मक को के भाजक से हटा दें.
चरण 1.9.3.1.2
को के रूप में फिर से लिखें.
चरण 1.9.3.1.3
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.9.3.1.4
को से विभाजित करें.
चरण 1.10
Take the inverse arccotangent of both sides of the equation to extract from inside the arccotangent.
चरण 2
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 3
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.2
सरल करें.
चरण 4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
पदों को पुनर्व्यवस्थित करें.
चरण 4.2.2
कोण सर्वसमिका के अंतर को लागू करें.
चरण 4.2.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.1
का सटीक मान है.
चरण 4.2.3.2
समतल में एक त्रिभुज बनाएंं जिसमें शीर्ष , और मूल बिंदु हों. फिर धनात्मक x-अक्ष और किरण के बीच का कोण है जो मूल बिंदु से शुरू होकर से होकर गुजरती है. इसलिए, है.
चरण 4.2.3.3
को से गुणा करें.
चरण 4.2.3.4
और जोड़ें.
चरण 4.2.4
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.4.1
समतल में एक त्रिभुज बनाएंं जिसमें शीर्ष , और मूल बिंदु हों. फिर धनात्मक x-अक्ष और किरण के बीच का कोण है जो मूल बिंदु से शुरू होकर से होकर गुजरती है. इसलिए, है.
चरण 4.2.4.2
का सटीक मान है.
चरण 4.2.4.3
को से गुणा करें.
चरण 4.2.4.4
और जोड़ें.
चरण 4.2.5
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 4.2.6
को से गुणा करें.
चरण 4.3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
में से का गुणनखंड करें.
चरण 4.3.2
में से का गुणनखंड करें.
चरण 4.3.3
में से का गुणनखंड करें.
चरण 4.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.5
को के बराबर सेट करें.
चरण 4.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1
को के बराबर सेट करें.
चरण 4.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.6.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.6.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.6.2.2.2.2
को से विभाजित करें.
चरण 4.6.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.3.1
को से विभाजित करें.
चरण 4.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 5
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.