समस्या दर्ज करें...
एलजेब्रा उदाहरण
, ,
चरण 1
चरण 1.1
में से का गुणनखंड करें.
चरण 1.1.1
में से का गुणनखंड करें.
चरण 1.1.2
में से का गुणनखंड करें.
चरण 1.1.3
में से का गुणनखंड करें.
चरण 1.2
को के रूप में फिर से लिखें.
चरण 1.3
को के रूप में फिर से लिखें.
चरण 1.4
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 1.5
गुणनखंड करें.
चरण 1.5.1
सरल करें.
चरण 1.5.1.1
को के रूप में फिर से लिखें.
चरण 1.5.1.2
गुणनखंड करें.
चरण 1.5.1.2.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 1.5.1.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 1.5.2
अनावश्यक कोष्ठक हटा दें.
चरण 2
चरण 2.1
में से का गुणनखंड करें.
चरण 2.1.1
में से का गुणनखंड करें.
चरण 2.1.2
में से का गुणनखंड करें.
चरण 2.1.3
में से का गुणनखंड करें.
चरण 2.2
को के रूप में फिर से लिखें.
चरण 2.3
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के अंतर का उपयोग करने वाले गुणनखंड जहाँ और हैं.
चरण 2.4
गुणनखंड करें.
चरण 2.4.1
सरल करें.
चरण 2.4.1.1
को से गुणा करें.
चरण 2.4.1.2
एक का कोई भी घात एक होता है.
चरण 2.4.2
अनावश्यक कोष्ठक हटा दें.
चरण 3
चरण 3.1
में से का गुणनखंड करें.
चरण 3.1.1
में से का गुणनखंड करें.
चरण 3.1.2
में से का गुणनखंड करें.
चरण 3.1.3
में से का गुणनखंड करें.
चरण 3.2
को के रूप में फिर से लिखें.
चरण 3.3
गुणनखंड करें.
चरण 3.3.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 3.3.2
अनावश्यक कोष्ठक हटा दें.
चरण 4
चूंकि में संख्याएँ और चर दोनों होते हैं, इसलिए LCM पता करने के लिए चार चरण होते हैं. संख्यात्मक, चर और मिश्रित चर भागों के लिए LCM पता करें. फिर, उन सभी को एक साथ गुणा करें.
के लिए LCM (लघुत्तम समापवर्तक) का मान ज्ञात करने के चरण हैं:
1. सांख्यिक भाग के लिए LCM ज्ञात कीजिए.
2. चर भाग के लिए LCM ज्ञात कीजिए.
3. यौगिक चर भाग के लिए LCM ज्ञात कीजिए
4. प्रत्येक LCM को एक साथ गुणा करें.
चरण 5
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 6
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 7
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 8
का गुणनखंड ही है.
बार आता है.
चरण 9
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 10
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 11
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 12
चरण 12.1
को से गुणा करें.
चरण 12.2
घातांक जोड़कर को से गुणा करें.
चरण 12.2.1
को से गुणा करें.
चरण 12.2.1.1
को के घात तक बढ़ाएं.
चरण 12.2.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 12.2.2
और जोड़ें.
चरण 13
का गुणनखंड ही है.
बार आता है.
चरण 14
का गुणनखंड ही है.
बार आता है.
चरण 15
का गुणनखंड ही है.
बार आता है.
चरण 16
का गुणनखंड ही है.
बार आता है.
चरण 17
का गुणनखंड ही है.
बार आता है.
चरण 18
का गुणनखंड ही है.
बार आता है.
चरण 19
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 20
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.