समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
समीकरण में प्रतिस्थापित करें. इससे द्विघात सूत्र का उपयोग करना आसान हो जाएगा.
चरण 2
चरण 2.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
चरण 2.1.1
से गुणा करें.
चरण 2.1.2
को जोड़ के रूप में फिर से लिखें
चरण 2.1.3
वितरण गुणधर्म लागू करें.
चरण 2.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 2.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
चरण 4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 4.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.2.1.2
को से विभाजित करें.
चरण 5
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 7
हल किए गए समीकरण में के वास्तविक मान को वापस प्रतिस्थापित करें.
चरण 8
के लिए पहला समीकरण हल करें.
चरण 9
चरण 9.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 9.2
को सरल करें.
चरण 9.2.1
को के रूप में फिर से लिखें.
चरण 9.2.2
को से गुणा करें.
चरण 9.2.3
भाजक को मिलाएं और सरल करें.
चरण 9.2.3.1
को से गुणा करें.
चरण 9.2.3.2
को के घात तक बढ़ाएं.
चरण 9.2.3.3
को के घात तक बढ़ाएं.
चरण 9.2.3.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 9.2.3.5
और जोड़ें.
चरण 9.2.3.6
को के रूप में फिर से लिखें.
चरण 9.2.3.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 9.2.3.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 9.2.3.6.3
और को मिलाएं.
चरण 9.2.3.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.3.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.3.6.4.2
व्यंजक को फिर से लिखें.
चरण 9.2.3.6.5
घातांक का मान ज्ञात करें.
चरण 9.2.4
न्यूमेरेटर को सरल करें.
चरण 9.2.4.1
रेडिकल के लिए उत्पाद नियम का उपयोग करके जोड़ें.
चरण 9.2.4.2
को से गुणा करें.
चरण 9.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 9.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 9.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 9.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 10
का मान ज्ञात करने के लिए दूसरा समीकरण हल करें.
चरण 11
चरण 11.1
कोष्ठक हटा दें.
चरण 11.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 11.3
को के रूप में फिर से लिखें.
चरण 11.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 11.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 11.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 11.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 12
का हल है.
चरण 13