समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
कोष्ठक हटा दें.
चरण 1.3
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
से गुणा करके सरल करें.
चरण 2.2.1.1
वितरण गुणधर्म लागू करें.
चरण 2.2.1.2
व्यंजक को सरल बनाएंं.
चरण 2.2.1.2.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.2.2
को से गुणा करें.
चरण 2.2.2
प्रत्येक पद को सरल करें.
चरण 2.2.2.1
घातांक जोड़कर को से गुणा करें.
चरण 2.2.2.1.1
ले जाएं.
चरण 2.2.2.1.2
को से गुणा करें.
चरण 2.2.2.2
को से गुणा करें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.2
व्यंजक को फिर से लिखें.
चरण 3
चरण 3.1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
चरण 3.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.1.2
में से घटाएं.
चरण 3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3
में से का गुणनखंड करें.
चरण 3.3.1
में से का गुणनखंड करें.
चरण 3.3.2
में से का गुणनखंड करें.
चरण 3.3.3
में से का गुणनखंड करें.
चरण 3.3.4
में से का गुणनखंड करें.
चरण 3.3.5
में से का गुणनखंड करें.
चरण 3.4
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.2
को से विभाजित करें.
चरण 3.4.3
दाईं ओर को सरल बनाएंं.
चरण 3.4.3.1
को से विभाजित करें.
चरण 3.5
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 3.6
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 3.7
सरल करें.
चरण 3.7.1
न्यूमेरेटर को सरल करें.
चरण 3.7.1.1
को के घात तक बढ़ाएं.
चरण 3.7.1.2
गुणा करें.
चरण 3.7.1.2.1
को से गुणा करें.
चरण 3.7.1.2.2
को से गुणा करें.
चरण 3.7.1.3
और जोड़ें.
चरण 3.7.1.4
को के रूप में फिर से लिखें.
चरण 3.7.1.4.1
में से का गुणनखंड करें.
चरण 3.7.1.4.2
को के रूप में फिर से लिखें.
चरण 3.7.1.5
करणी से पदों को बाहर निकालें.
चरण 3.7.2
को से गुणा करें.
चरण 3.7.3
को सरल करें.
चरण 3.8
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: