एलजेब्रा उदाहरण

xについて不等式を解く x+3> के वर्गमूल 9-x^2 के वर्गमूल
चरण 1
असमानता के बाईं पक्ष की ओर करणी को हटाने के लिए, असमानता के दोनों किनारों को वर्ग करें.
चरण 2
असमानता के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.2
सरल करें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
को के रूप में फिर से लिखें.
चरण 2.3.1.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.3.1.3
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.3.1.3.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.1.3.3
और को मिलाएं.
चरण 2.3.1.3.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.3.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.3.4.2
व्यंजक को फिर से लिखें.
चरण 2.3.1.3.5
सरल करें.
चरण 2.3.1.4
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.4.1
वितरण गुणधर्म लागू करें.
चरण 2.3.1.4.2
वितरण गुणधर्म लागू करें.
चरण 2.3.1.4.3
वितरण गुणधर्म लागू करें.
चरण 2.3.1.5
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.5.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.5.1.1
को से गुणा करें.
चरण 2.3.1.5.1.2
को से गुणा करें.
चरण 2.3.1.5.1.3
को के बाईं ओर ले जाएं.
चरण 2.3.1.5.1.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.3.1.5.1.5
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.5.1.5.1
ले जाएं.
चरण 2.3.1.5.1.5.2
को से गुणा करें.
चरण 2.3.1.5.2
और जोड़ें.
चरण 2.3.1.5.3
और जोड़ें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
असमानता के दोनों पक्षों में जोड़ें.
चरण 3.2
असमानता को समीकरण में बदलें.
चरण 3.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.4
में से घटाएं.
चरण 3.5
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 3.5.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.5.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.5.3
की सभी घटनाओं को से बदलें.
चरण 3.6
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.7.1
को के बराबर सेट करें.
चरण 3.7.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.8
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.8.1
को के बराबर सेट करें.
चरण 3.8.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.9
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4.2
असमानता के दोनों पक्षों से घटाएं.
चरण 4.3
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.4.2
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.2.1
को के बराबर सेट करें.
चरण 4.4.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.4.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.3.1
को के बराबर सेट करें.
चरण 4.4.3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.3.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.4.3.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.3.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.4.3.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.4.3.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.4.3.2.2.2.2
को से विभाजित करें.
चरण 4.4.3.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.4.3.2.2.3.1
को से विभाजित करें.
चरण 4.4.4
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4.4.5
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 4.4.6
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.6.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 4.4.6.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 4.4.6.1.2
मूल असमानता में को से बदलें.
चरण 4.4.6.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 4.4.6.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 4.4.6.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 4.4.6.2.2
मूल असमानता में को से बदलें.
चरण 4.4.6.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 4.4.6.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 4.4.6.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 4.4.6.3.2
मूल असमानता में को से बदलें.
चरण 4.4.6.3.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 4.4.6.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
गलत
सही
गलत
चरण 4.4.7
हल में सभी सच्चे अंतराल होते हैं.
चरण 4.5
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 5
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 6
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.1.2
मूल असमानता में को से बदलें.
चरण 6.1.3
बाईं ओर दाईं ओर के बराबर नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 6.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.2.2
मूल असमानता में को से बदलें.
चरण 6.2.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 6.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.3.2
मूल असमानता में को से बदलें.
चरण 6.3.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 6.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.4.2
मूल असमानता में को से बदलें.
चरण 6.4.3
बाईं ओर दाईं ओर के बराबर नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 6.5
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
गलत
सही
गलत
गलत
गलत
सही
गलत
चरण 7
हल में सभी सच्चे अंतराल होते हैं.
चरण 8
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 9