समस्या दर्ज करें...
एलजेब्रा उदाहरण
,
चरण 1
चरण 1.1
में से का गुणनखंड करें.
चरण 1.2
में से का गुणनखंड करें.
चरण 1.3
में से का गुणनखंड करें.
चरण 2
चरण 2.1
में से का गुणनखंड करें.
चरण 2.1.1
में से का गुणनखंड करें.
चरण 2.1.2
में से का गुणनखंड करें.
चरण 2.1.3
में से का गुणनखंड करें.
चरण 2.1.4
में से का गुणनखंड करें.
चरण 2.1.5
में से का गुणनखंड करें.
चरण 2.2
गुणनखंड करें.
चरण 2.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 2.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 2.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 2.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 3
चूंकि में संख्याएँ और चर दोनों होते हैं, इसलिए LCM पता करने के लिए चार चरण होते हैं. संख्यात्मक, चर और मिश्रित चर भागों के लिए LCM पता करें. फिर, उन सभी को एक साथ गुणा करें.
के लिए LCM (लघुत्तम समापवर्तक) का मान ज्ञात करने के चरण हैं:
1. सांख्यिक भाग के लिए LCM ज्ञात कीजिए.
2. चर भाग के लिए LCM ज्ञात कीजिए.
3. यौगिक चर भाग के लिए LCM ज्ञात कीजिए
4. प्रत्येक LCM को एक साथ गुणा करें.
चरण 4
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 5
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 6
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 7
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 8
को से गुणा करें.
चरण 9
का गुणनखंड ही है.
बार आता है.
चरण 10
का गुणनखंड ही है.
बार आता है.
चरण 11
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 12
को से गुणा करें.
चरण 13
का गुणनखंड ही है.
बार आता है.
चरण 14
का गुणनखंड ही है.
बार आता है.
चरण 15
का गुणनखंड ही है.
बार आता है.
चरण 16
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 17
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.