एलजेब्रा उदाहरण

Equationsのシステムを求めなさい。 xy=6 3y=x-3
चरण 1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.1.2
को से विभाजित करें.
चरण 2
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
की सभी घटनाओं को में से बदलें.
चरण 2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
कोष्ठक हटा दें.
चरण 3
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.1.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
y
y
चरण 3.2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1
ले जाएं.
चरण 3.2.2.1.2
को से गुणा करें.
चरण 3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.3
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1.1
में से का गुणनखंड करें.
चरण 3.3.3.1.2
में से का गुणनखंड करें.
चरण 3.3.3.1.3
में से का गुणनखंड करें.
चरण 3.3.3.1.4
में से का गुणनखंड करें.
चरण 3.3.3.1.5
में से का गुणनखंड करें.
चरण 3.3.3.2
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.3.3.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.3.3.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 3.3.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.3.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.5.1
को के बराबर सेट करें.
चरण 3.3.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.6.1
को के बराबर सेट करें.
चरण 3.3.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
की सभी घटनाओं को में से बदलें.
चरण 4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से विभाजित करें.
चरण 5
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
की सभी घटनाओं को में से बदलें.
चरण 5.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
को से विभाजित करें.
चरण 6
सिस्टम का हल क्रमित युग्म का पूरा सेट है जो मान्य हल हैं.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
बिन्दू रूप:
समीकरण रूप:
चरण 8