एलजेब्रा उदाहरण

चरण 1
प्रत्येक पद का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
उभयनिष्ठ गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
में से का गुणनखंड करें.
चरण 1.1.2
में से का गुणनखंड करें.
चरण 1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.4
व्यंजक को फिर से लिखें.
चरण 1.2
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 1.2.2
को से गुणा करें.
चरण 1.3
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
में से का गुणनखंड करें.
चरण 1.3.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.2.1
से गुणा करें.
चरण 1.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.2.3
व्यंजक को फिर से लिखें.
चरण 1.3.2.4
को से विभाजित करें.
चरण 2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
को के घात तक बढ़ाएं.
चरण 2.2.1.2
में से का गुणनखंड करें.
चरण 2.2.1.3
में से का गुणनखंड करें.
चरण 2.2.1.4
में से का गुणनखंड करें.
चरण 2.2.2
को के रूप में फिर से लिखें.
चरण 2.2.3
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के अंतर का उपयोग करने वाले गुणनखंड जहाँ और हैं.
चरण 2.2.4
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1.1
एक का कोई भी घात एक होता है.
चरण 2.2.4.1.2
को से गुणा करें.
चरण 2.2.4.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.5.2.2.2.2
को से विभाजित करें.
चरण 2.5.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.3.1
को से विभाजित करें.
चरण 2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
को के बराबर सेट करें.
चरण 2.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 2.6.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 2.6.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1.1
एक का कोई भी घात एक होता है.
चरण 2.6.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.3.1.2.1
को से गुणा करें.
चरण 2.6.2.3.1.2.2
को से गुणा करें.
चरण 2.6.2.3.1.3
में से घटाएं.
चरण 2.6.2.3.1.4
को के रूप में फिर से लिखें.
चरण 2.6.2.3.1.5
को के रूप में फिर से लिखें.
चरण 2.6.2.3.1.6
को के रूप में फिर से लिखें.
चरण 2.6.2.3.2
को से गुणा करें.
चरण 2.6.2.4
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.