समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
असमानता के बाईं पक्ष की ओर करणी को हटाने के लिए, असमानता के दोनों किनारों को वर्ग करें.
चरण 2
चरण 2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
को सरल करें.
चरण 2.2.1.1
घातांक को में गुणा करें.
चरण 2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.2
सरल करें.
चरण 3
चरण 3.1
असमानता के दोनों पक्षों से घटाएं.
चरण 3.2
असमानता को समीकरण में बदलें.
चरण 3.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
चरण 3.3.1
में से का गुणनखंड करें.
चरण 3.3.1.1
व्यंजक को पुन: व्यवस्थित करें.
चरण 3.3.1.1.1
ले जाएं.
चरण 3.3.1.1.2
और को पुन: क्रमित करें.
चरण 3.3.1.2
में से का गुणनखंड करें.
चरण 3.3.1.3
में से का गुणनखंड करें.
चरण 3.3.1.4
को के रूप में फिर से लिखें.
चरण 3.3.1.5
में से का गुणनखंड करें.
चरण 3.3.1.6
में से का गुणनखंड करें.
चरण 3.3.2
गुणनखंड करें.
चरण 3.3.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 3.3.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.3.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.3.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 3.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.5
को के बराबर सेट करें और के लिए हल करें.
चरण 3.5.1
को के बराबर सेट करें.
चरण 3.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.6
को के बराबर सेट करें और के लिए हल करें.
चरण 3.6.1
को के बराबर सेट करें.
चरण 3.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
चरण 4.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4.2
के लिए हल करें.
चरण 4.2.1
असमानता के दोनों पक्षों से घटाएं.
चरण 4.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.2.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 4.2.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.2.2.2.2
को से विभाजित करें.
चरण 4.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 4.2.2.3.1
को से विभाजित करें.
चरण 4.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 5
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 6
चरण 6.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 6.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.1.2
मूल असमानता में को से बदलें.
चरण 6.1.3
बाईं ओर दाईं ओर से कम नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 6.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 6.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.2.2
मूल असमानता में को से बदलें.
चरण 6.2.3
बाईं ओर दाईं ओर से कम नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 6.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 6.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.3.2
मूल असमानता में को से बदलें.
चरण 6.3.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 6.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 6.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 6.4.2
मूल असमानता में को से बदलें.
चरण 6.4.3
बाईं ओर दाईं ओर के बराबर नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 6.5
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
गलत
सही
गलत
गलत
गलत
सही
गलत
चरण 7
हल में सभी सच्चे अंतराल होते हैं.
चरण 8
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 9