एलजेब्रा उदाहरण

yを解きます 1/(y^2)=(y-6)/(2y^2)+(3y^2+24y+48)/(y^2)
चरण 1
प्रत्येक पद का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
में से का गुणनखंड करें.
चरण 1.1.2
में से का गुणनखंड करें.
चरण 1.1.3
में से का गुणनखंड करें.
चरण 1.1.4
में से का गुणनखंड करें.
चरण 1.1.5
में से का गुणनखंड करें.
चरण 1.2
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
को के रूप में फिर से लिखें.
चरण 1.2.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 1.2.3
बहुपद को फिर से लिखें.
चरण 1.2.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.5
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 2.6
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.7
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 2.8
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 2.9
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 2.10
को से गुणा करें.
चरण 2.11
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.2.2
और को मिलाएं.
चरण 3.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.3.2
व्यंजक को फिर से लिखें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.2.1
में से का गुणनखंड करें.
चरण 3.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 3.3.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.3.2
व्यंजक को फिर से लिखें.
चरण 3.3.1.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.1.5
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.5.1
और को मिलाएं.
चरण 3.3.1.5.2
को से गुणा करें.
चरण 3.3.1.6
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.6.2
व्यंजक को फिर से लिखें.
चरण 4
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण को के रूप में फिर से लिखें.
चरण 4.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1
को के रूप में फिर से लिखें.
चरण 4.3.1.2
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.2.1
वितरण गुणधर्म लागू करें.
चरण 4.3.1.2.2
वितरण गुणधर्म लागू करें.
चरण 4.3.1.2.3
वितरण गुणधर्म लागू करें.
चरण 4.3.1.3
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.3.1.1
को से गुणा करें.
चरण 4.3.1.3.1.2
को के बाईं ओर ले जाएं.
चरण 4.3.1.3.1.3
को से गुणा करें.
चरण 4.3.1.3.2
और जोड़ें.
चरण 4.3.1.4
वितरण गुणधर्म लागू करें.
चरण 4.3.1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.5.1
को से गुणा करें.
चरण 4.3.1.5.2
को से गुणा करें.
चरण 4.3.2
और जोड़ें.
चरण 4.3.3
और जोड़ें.
चरण 4.3.4
में से घटाएं.
चरण 4.4
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 4.4.2
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.2.1
पदों को पुन: व्यवस्थित करें
चरण 4.4.2.2
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 4.4.2.2.1
में से का गुणनखंड करें.
चरण 4.4.2.2.2
को जोड़ के रूप में फिर से लिखें
चरण 4.4.2.2.3
वितरण गुणधर्म लागू करें.
चरण 4.4.2.3
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.2.3.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 4.4.2.3.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 4.4.2.4
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 4.4.3
की सभी घटनाओं को से बदलें.
चरण 4.5
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1
को के बराबर सेट करें.
चरण 4.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.6.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.6.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.6.2.2.2.1.2
को से विभाजित करें.
चरण 4.6.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.6.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.1
को के बराबर सेट करें.
चरण 4.7.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.7.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.7.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.7.2.2.2.1.2
को से विभाजित करें.
चरण 4.7.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.7.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.8
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
मिश्रित संख्या रूप: