एलजेब्रा उदाहरण

xについて不等式を解く 36>2 का लघुगणक बेस x-3
चरण 1
असमानता को समानता में बदलें.
चरण 2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 2.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
को के रूप में फिर से लिखें.
चरण 2.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.2.3.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.3.2.2
और जोड़ें.
चरण 2.2.3.3
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.2.3.4
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.3.4.2
और जोड़ें.
चरण 2.2.3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
यह पता लगाने के लिए कि व्यंजक कहाँ परिभाषित किया गया है, आधार को में से बड़ा सेट करें.
चरण 3.2
असमानता के दोनों पक्षों में जोड़ें.
चरण 3.3
यह पता लगाने के लिए कि व्यंजक कहाँ अपरिभाषित है, आधार को में के बराबर सेट करें.
चरण 3.4
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.4.2
और जोड़ें.
चरण 3.5
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 4
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 5
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.1.2
मूल असमानता में को से बदलें.
चरण 5.1.3
ऋणात्मक संख्या का लघुगणक अपरिभाषित होता है.
अपरिभाषित
अपरिभाषित
चरण 5.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.2.2
मूल असमानता में को से बदलें.
चरण 5.2.3
ऋणात्मक संख्या का लघुगणक अपरिभाषित होता है.
अपरिभाषित
अपरिभाषित
चरण 5.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.3.2
मूल असमानता में को से बदलें.
चरण 5.3.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 5.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.4.2
मूल असमानता में को से बदलें.
चरण 5.4.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 5.5
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.5.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.5.2
मूल असमानता में को से बदलें.
चरण 5.5.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 5.6
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
Undefined
Undefined
गलत
सही
गलत
अपरिभाषित
चरण 6
हल में सभी सच्चे अंतराल होते हैं.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 8