Trigonométrie Exemples

Trouver là où la fonction n'est pas définie ou discontinue cos(pi-a)*tan((3pi)/2-a)
Étape 1
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Soustrayez des deux côtés de l’équation.
Étape 2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.1.3
Soustrayez de .
Étape 2.1.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.1
Factorisez à partir de .
Étape 2.1.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.2.1
Factorisez à partir de .
Étape 2.1.4.2.2
Annulez le facteur commun.
Étape 2.1.4.2.3
Réécrivez l’expression.
Étape 2.1.4.2.4
Divisez par .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.2.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.1
Déplacez le moins un du dénominateur de .
Étape 2.2.3.1.2
Réécrivez comme .
Étape 2.2.3.1.3
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.3.1.4
Divisez par .
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
, pour tout entier
Étape 4