Trigonométrie Exemples

Trouver là où la fonction n'est pas définie ou discontinue y=2+sec(x/3)
Étape 1
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez les deux côtés de l’équation par .
Étape 2.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Annulez le facteur commun.
Étape 2.2.1.1.2
Réécrivez l’expression.
Étape 2.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Appliquez la propriété distributive.
Étape 2.2.2.1.2
Associez et .
Étape 2.3
Remettez dans l’ordre et .
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
, pour tout entier
Étape 4