Trigonométrie Exemples

Trouver là où la fonction n'est pas définie ou discontinue (3/2)tan(x) = square root of 3/2
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Réécrivez comme .
Étape 2.3
Multipliez par .
Étape 2.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Multipliez par .
Étape 2.4.2
Élevez à la puissance .
Étape 2.4.3
Élevez à la puissance .
Étape 2.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.4.5
Additionnez et .
Étape 2.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.6.1
Utilisez pour réécrire comme .
Étape 2.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.4.6.3
Associez et .
Étape 2.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.6.4.1
Annulez le facteur commun.
Étape 2.4.6.4.2
Réécrivez l’expression.
Étape 2.4.6.5
Évaluez l’exposant.
Étape 2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 2.5.2
Multipliez par .
Étape 3
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 4
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
, pour tout entier
Étape 5