Trigonométrie Exemples

Trouver là où la fonction n'est pas définie ou discontinue base logarithmique 2 de x+8 = base logarithmique 2 de 3+ base logarithmique 2 de 5
Étape 1
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la propriété du quotient des logarithmes, .
Étape 2.2
Utilisez la propriété du quotient des logarithmes, .
Étape 2.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Multipliez par .
Étape 2.4.2
Multipliez par .
Étape 3
Définissez l’argument dans inférieur ou égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez les deux côtés par .
Étape 4.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Annulez le facteur commun.
Étape 4.2.1.1.2
Réécrivez l’expression.
Étape 4.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Multipliez par .
Étape 4.3
Soustrayez des deux côtés de l’inégalité.
Étape 5
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6