Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Réécrivez en termes de sinus et de cosinus, puis annulez les facteurs communs.
Étape 1.1.1
Réécrivez en termes de sinus et de cosinus.
Étape 1.1.2
Annulez les facteurs communs.
Étape 2
Divisez chaque terme dans l’équation par .
Étape 3
Convertissez de à .
Étape 4
Étape 4.1
Annulez le facteur commun.
Étape 4.2
Réécrivez l’expression.
Étape 5
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 6
Étape 6.1
La valeur exacte de est .
Étape 7
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 8
Étape 8.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8.2
Associez les fractions.
Étape 8.2.1
Associez et .
Étape 8.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.3
Simplifiez le numérateur.
Étape 8.3.1
Déplacez à gauche de .
Étape 8.3.2
Additionnez et .
Étape 9
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 9.4
Divisez par .
Étape 10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 11
Consolidez les réponses.
, pour tout entier