Pré-calcul Exemples

Resolva para x logarithme népérien de x+ logarithme népérien de x+6=1/2* logarithme népérien de 9
Étape 1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez la propriété du produit des logarithmes, .
Étape 1.2
Appliquez la propriété distributive.
Étape 1.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Déplacez à gauche de .
Étape 2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Réécrivez comme .
Étape 2.3
Développez en déplaçant hors du logarithme.
Étape 2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Annulez le facteur commun.
Étape 2.4.2
Divisez par .
Étape 3
Pour que l’équation soit égale, l’argument des logarithmes des deux côtés de l’équation doit être égal.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1
Élevez à la puissance .
Étape 4.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.2.1
Multipliez par .
Étape 4.4.1.2.2
Multipliez par .
Étape 4.4.1.3
Additionnez et .
Étape 4.4.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.4.1
Factorisez à partir de .
Étape 4.4.1.4.2
Réécrivez comme .
Étape 4.4.1.5
Extrayez les termes de sous le radical.
Étape 4.4.2
Multipliez par .
Étape 4.4.3
Simplifiez .
Étape 4.5
La réponse finale est la combinaison des deux solutions.
Étape 5
Excluez les solutions qui ne rendent pas vrai.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :