Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.1.3
Remplacez toutes les occurrences de par .
Étape 3.2
Différenciez.
Étape 3.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.4
Simplifiez l’expression.
Étape 3.2.4.1
Additionnez et .
Étape 3.2.4.2
Multipliez par .
Étape 3.3
Simplifiez
Étape 3.3.1
Appliquez la propriété distributive.
Étape 3.3.2
Appliquez la propriété distributive.
Étape 3.3.3
Associez des termes.
Étape 3.3.3.1
Multipliez par en additionnant les exposants.
Étape 3.3.3.1.1
Déplacez .
Étape 3.3.3.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.3.1.3
Additionnez et .
Étape 3.3.3.2
Multipliez par .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.