Calcul infinitésimal Exemples

Encontre dy/dx racine carrée de x+y+ racine carrée de x-y=4
Étape 1
Réécrivez le côté gauche avec des exposants rationnels.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez pour réécrire comme .
Étape 1.2
Utilisez pour réécrire comme .
Étape 2
Différenciez les deux côtés de l’équation.
Étape 3
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.1.3
Remplacez toutes les occurrences de par .
Étape 3.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.4
Réécrivez comme .
Étape 3.2.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.6
Associez et .
Étape 3.2.7
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.8
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.1
Multipliez par .
Étape 3.2.8.2
Soustrayez de .
Étape 3.2.9
Placez le signe moins devant la fraction.
Étape 3.2.10
Associez et .
Étape 3.2.11
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.1.3
Remplacez toutes les occurrences de par .
Étape 3.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.5
Réécrivez comme .
Étape 3.3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.7
Associez et .
Étape 3.3.8
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.9.1
Multipliez par .
Étape 3.3.9.2
Soustrayez de .
Étape 3.3.10
Placez le signe moins devant la fraction.
Étape 3.3.11
Associez et .
Étape 3.3.12
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.4
Remettez les termes dans l’ordre.
Étape 4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1
Multipliez par .
Étape 6.1.1.2
Multipliez par .
Étape 6.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.4.1
Multipliez par .
Étape 6.1.4.2
Multipliez par .
Étape 6.1.4.3
Réorganisez les facteurs de .
Étape 6.1.5
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.6.1
Appliquez la propriété distributive.
Étape 6.1.6.2
Multipliez par .
Étape 6.1.6.3
Appliquez la propriété distributive.
Étape 6.1.6.4
Multipliez par .
Étape 6.2
Définissez le numérateur égal à zéro.
Étape 6.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1.1
Soustrayez des deux côtés de l’équation.
Étape 6.3.1.2
Soustrayez des deux côtés de l’équation.
Étape 6.3.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Factorisez à partir de .
Étape 6.3.2.2
Factorisez à partir de .
Étape 6.3.2.3
Factorisez à partir de .
Étape 6.3.3
Réécrivez comme .
Étape 6.3.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.1
Divisez chaque terme dans par .
Étape 6.3.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.2.1
Annulez le facteur commun.
Étape 6.3.4.2.2
Divisez par .
Étape 6.3.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.3.1
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.4.3.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.3.2.1
Factorisez à partir de .
Étape 6.3.4.3.2.2
Factorisez à partir de .
Étape 6.3.4.3.2.3
Factorisez à partir de .
Étape 6.3.4.3.3
Placez le signe moins devant la fraction.
Étape 7
Remplacez par.