Calcul infinitésimal Exemples

Trouver les points critiques 16x^4+125x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Multipliez par .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Ajoutez aux deux côtés de l’équation.
Étape 2.4
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez comme .
Étape 2.4.2
Réécrivez comme .
Étape 2.4.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, et .
Étape 2.4.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.4.1
Appliquez la règle de produit à .
Étape 2.4.4.2
Élevez à la puissance .
Étape 2.4.4.3
Multipliez par .
Étape 2.4.4.4
Multipliez par .
Étape 2.4.4.5
Élevez à la puissance .
Étape 2.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.6.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.1
Divisez chaque terme dans par .
Étape 2.6.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.2.1.1
Annulez le facteur commun.
Étape 2.6.2.2.2.1.2
Divisez par .
Étape 2.6.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.3.1
Placez le signe moins devant la fraction.
Étape 2.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Définissez égal à .
Étape 2.7.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.7.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.7.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.3.1.1
Élevez à la puissance .
Étape 2.7.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.3.1.2.1
Multipliez par .
Étape 2.7.2.3.1.2.2
Multipliez par .
Étape 2.7.2.3.1.3
Soustrayez de .
Étape 2.7.2.3.1.4
Réécrivez comme .
Étape 2.7.2.3.1.5
Réécrivez comme .
Étape 2.7.2.3.1.6
Réécrivez comme .
Étape 2.7.2.3.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.3.1.7.1
Factorisez à partir de .
Étape 2.7.2.3.1.7.2
Réécrivez comme .
Étape 2.7.2.3.1.8
Extrayez les termes de sous le radical.
Étape 2.7.2.3.1.9
Déplacez à gauche de .
Étape 2.7.2.3.2
Multipliez par .
Étape 2.7.2.3.3
Simplifiez .
Étape 2.7.2.4
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.4.1.1
Élevez à la puissance .
Étape 2.7.2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.4.1.2.1
Multipliez par .
Étape 2.7.2.4.1.2.2
Multipliez par .
Étape 2.7.2.4.1.3
Soustrayez de .
Étape 2.7.2.4.1.4
Réécrivez comme .
Étape 2.7.2.4.1.5
Réécrivez comme .
Étape 2.7.2.4.1.6
Réécrivez comme .
Étape 2.7.2.4.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.4.1.7.1
Factorisez à partir de .
Étape 2.7.2.4.1.7.2
Réécrivez comme .
Étape 2.7.2.4.1.8
Extrayez les termes de sous le radical.
Étape 2.7.2.4.1.9
Déplacez à gauche de .
Étape 2.7.2.4.2
Multipliez par .
Étape 2.7.2.4.3
Simplifiez .
Étape 2.7.2.4.4
Remplacez le par .
Étape 2.7.2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.5.1.1
Élevez à la puissance .
Étape 2.7.2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.5.1.2.1
Multipliez par .
Étape 2.7.2.5.1.2.2
Multipliez par .
Étape 2.7.2.5.1.3
Soustrayez de .
Étape 2.7.2.5.1.4
Réécrivez comme .
Étape 2.7.2.5.1.5
Réécrivez comme .
Étape 2.7.2.5.1.6
Réécrivez comme .
Étape 2.7.2.5.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.5.1.7.1
Factorisez à partir de .
Étape 2.7.2.5.1.7.2
Réécrivez comme .
Étape 2.7.2.5.1.8
Extrayez les termes de sous le radical.
Étape 2.7.2.5.1.9
Déplacez à gauche de .
Étape 2.7.2.5.2
Multipliez par .
Étape 2.7.2.5.3
Simplifiez .
Étape 2.7.2.5.4
Remplacez le par .
Étape 2.7.2.6
La réponse finale est la combinaison des deux solutions.
Étape 2.8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1.1
Appliquez la règle de produit à .
Étape 4.1.2.1.1.2
Appliquez la règle de produit à .
Étape 4.1.2.1.2
Élevez à la puissance .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.1.4
Élevez à la puissance .
Étape 4.1.2.1.5
Élevez à la puissance .
Étape 4.1.2.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.6.1
Factorisez à partir de .
Étape 4.1.2.1.6.2
Annulez le facteur commun.
Étape 4.1.2.1.6.3
Réécrivez l’expression.
Étape 4.1.2.1.7
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.7.1
Multipliez par .
Étape 4.1.2.1.7.2
Associez et .
Étape 4.1.2.1.7.3
Multipliez par .
Étape 4.1.2.1.8
Placez le signe moins devant la fraction.
Étape 4.1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.5.1
Multipliez par .
Étape 4.1.2.5.2
Soustrayez de .
Étape 4.1.2.6
Placez le signe moins devant la fraction.
Étape 4.2
Indiquez tous les points.
Étape 5