Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.3
Remplacez toutes les occurrences de par .
Étape 3.4
Différenciez.
Étape 3.4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.4.4
Multipliez par .
Étape 3.4.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.6
Simplifiez l’expression.
Étape 3.4.6.1
Additionnez et .
Étape 3.4.6.2
Multipliez par .
Étape 3.5
Élevez à la puissance .
Étape 3.6
Utilisez la règle de puissance pour associer des exposants.
Étape 3.7
Additionnez et .
Étape 3.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.9
Multipliez par .
Étape 3.10
Simplifiez
Étape 3.10.1
Appliquez la propriété distributive.
Étape 3.10.2
Multipliez par .
Étape 3.10.3
Factorisez à partir de .
Étape 3.10.3.1
Factorisez à partir de .
Étape 3.10.3.2
Factorisez à partir de .
Étape 3.10.3.3
Factorisez à partir de .
Étape 3.10.4
Additionnez et .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.