Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.2
Multipliez par .
Étape 1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.6
Simplifiez l’expression.
Étape 1.1.2.6.1
Additionnez et .
Étape 1.1.2.6.2
Multipliez par .
Étape 1.1.3
Élevez à la puissance .
Étape 1.1.4
Élevez à la puissance .
Étape 1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6
Additionnez et .
Étape 1.1.7
Soustrayez de .
Étape 1.1.8
Simplifiez
Étape 1.1.8.1
Factorisez à partir de .
Étape 1.1.8.2
Réécrivez comme .
Étape 1.1.8.3
Factorisez à partir de .
Étape 1.1.8.4
Réécrivez comme .
Étape 1.1.8.5
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez le numérateur.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Soustrayez de .
Étape 5.2.2
Simplifiez le dénominateur.
Étape 5.2.2.1
Élevez à la puissance .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.2.3
Élevez à la puissance .
Étape 5.2.3
Simplifiez l’expression.
Étape 5.2.3.1
Divisez par .
Étape 5.2.3.2
Multipliez par .
Étape 5.2.4
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez le numérateur.
Étape 6.2.1.1
L’élévation de à toute puissance positive produit .
Étape 6.2.1.2
Soustrayez de .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
L’élévation de à toute puissance positive produit .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
Réduisez l’expression en annulant les facteurs communs.
Étape 6.2.3.1
Annulez le facteur commun à et .
Étape 6.2.3.1.1
Factorisez à partir de .
Étape 6.2.3.1.2
Annulez les facteurs communs.
Étape 6.2.3.1.2.1
Factorisez à partir de .
Étape 6.2.3.1.2.2
Annulez le facteur commun.
Étape 6.2.3.1.2.3
Réécrivez l’expression.
Étape 6.2.3.2
Placez le signe moins devant la fraction.
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez le numérateur.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Soustrayez de .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
Élevez à la puissance .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
Simplifiez l’expression.
Étape 7.2.3.1
Divisez par .
Étape 7.2.3.2
Multipliez par .
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9