Calcul infinitésimal Exemples

Évaluer à l'aide de la règle de l'Hôpital limite lorsque x approche de infinity de ( logarithme népérien de x)/( racine carrée de x)
Étape 1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Lorsque le logarithme approche de l’infini, la valeur passe à .
Étape 1.3
Lorsque approche de pour les radicaux, la valeur passe à .
Étape 1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
La dérivée de par rapport à est .
Étape 3.3
Utilisez pour réécrire comme .
Étape 3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.6
Associez et .
Étape 3.7
Associez les numérateurs sur le dénominateur commun.
Étape 3.8
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1
Multipliez par .
Étape 3.8.2
Soustrayez de .
Étape 3.9
Placez le signe moins devant la fraction.
Étape 3.10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.10.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.10.2
Multipliez par .
Étape 4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5
Réécrivez comme .
Étape 6
Combinez les facteurs.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Associez et .
Étape 6.2
Associez et .
Étape 7
Réduisez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Utilisez pour réécrire comme .
Étape 7.2
Factorisez à partir de .
Étape 7.3
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Élevez à la puissance .
Étape 7.3.2
Factorisez à partir de .
Étape 7.3.3
Annulez le facteur commun.
Étape 7.3.4
Réécrivez l’expression.
Étape 7.3.5
Divisez par .
Étape 7.4
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 8
Placez le terme hors de la limite car il est constant par rapport à .
Étape 9
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 10
Multipliez par .