Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Évaluez .
Étape 2.4.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.4.2
Réécrivez comme .
Étape 2.4.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.5
Multipliez par .
Étape 2.4.6
Multipliez par .
Étape 2.4.7
Multipliez par .
Étape 2.4.8
Additionnez et .
Étape 2.5
Simplifiez
Étape 2.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.5.2
Additionnez et .
Étape 2.5.3
Remettez les termes dans l’ordre.
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Étape 3.2.1
Réécrivez comme .
Étape 3.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.2.3
Remplacez toutes les occurrences de par .
Étape 3.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.4
Multipliez les exposants dans .
Étape 3.2.4.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.4.2
Multipliez par .
Étape 3.2.5
Multipliez par .
Étape 3.2.6
Élevez à la puissance .
Étape 3.2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.8
Soustrayez de .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Simplifiez
Étape 3.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.4.2
Associez des termes.
Étape 3.4.2.1
Associez et .
Étape 3.4.2.2
Placez le signe moins devant la fraction.
Étape 3.4.2.3
Additionnez et .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun extremum local.
Aucun extremum local
Étape 6
Aucun extremum local
Étape 7