Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux 3cos(x)-cos(x)^3
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.3
La dérivée de par rapport à est .
Étape 2.3.4
Multipliez par .
Étape 2.3.5
Multipliez par .
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Remettez les termes dans l’ordre.
Étape 2.4.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Factorisez à partir de .
Étape 2.4.2.2
Factorisez à partir de .
Étape 2.4.2.3
Factorisez à partir de .
Étape 2.4.3
Remettez dans l’ordre et .
Étape 2.4.4
Réécrivez comme .
Étape 2.4.5
Factorisez à partir de .
Étape 2.4.6
Factorisez à partir de .
Étape 2.4.7
Réécrivez comme .
Étape 2.4.8
Appliquez l’identité pythagoricienne.
Étape 2.4.9
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.9.1
Déplacez .
Étape 2.4.9.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.9.2.1
Élevez à la puissance .
Étape 2.4.9.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.4.9.3
Additionnez et .
Étape 2.4.10
Multipliez par .
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Multipliez par .
Étape 3.4
La dérivée de par rapport à est .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez par .
Étape 6
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 7
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Réécrivez comme .
Étape 7.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 8
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 9
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
La valeur exacte de est .
Étape 10
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 11
Soustrayez de .
Étape 12
La solution de l’équation est .
Étape 13
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 14
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
La valeur exacte de est .
Étape 14.2
L’élévation de à toute puissance positive produit .
Étape 14.3
Multipliez par .
Étape 14.4
La valeur exacte de est .
Étape 14.5
Multipliez par .
Étape 15
Comme il y a au moins un point avec ou une dérivée seconde indéfinie, appliquez le test de la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 15.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Remplacez la variable par dans l’expression.
Étape 15.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.2.1
Évaluez .
Étape 15.2.2.2
Élevez à la puissance .
Étape 15.2.2.3
Multipliez par .
Étape 15.2.2.4
La réponse finale est .
Étape 15.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 15.3.1
Remplacez la variable par dans l’expression.
Étape 15.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.3.2.1
Évaluez .
Étape 15.3.2.2
Élevez à la puissance .
Étape 15.3.2.3
Multipliez par .
Étape 15.3.2.4
La réponse finale est .
Étape 15.4
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 15.4.1
Remplacez la variable par dans l’expression.
Étape 15.4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.4.2.1
Évaluez .
Étape 15.4.2.2
Élevez à la puissance .
Étape 15.4.2.3
Multipliez par .
Étape 15.4.2.4
La réponse finale est .
Étape 15.5
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
Étape 15.6
Comme la dérivée première a changé de signe de négative à positive autour de , est un minimum local.
est un minimum local
Étape 15.7
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
est un maximum local
est un minimum local
Étape 16