Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.1.2
Différenciez.
Étape 2.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.4
Simplifiez l’expression.
Étape 2.1.2.4.1
Additionnez et .
Étape 2.1.2.4.2
Multipliez par .
Étape 2.1.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.1.4
Simplifiez
Étape 2.1.4.1
Appliquez la propriété distributive.
Étape 2.1.4.2
Soustrayez de .
Étape 2.1.4.3
Remettez les termes dans l’ordre.
Étape 2.1.4.4
Remettez les facteurs dans l’ordre dans .
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.4
Multipliez par .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.4
Simplifiez
Étape 2.2.4.1
Soustrayez de .
Étape 2.2.4.2
Remettez les termes dans l’ordre.
Étape 2.2.4.3
Remettez les facteurs dans l’ordre dans .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Factorisez à partir de .
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Factorisez à partir de .
Étape 3.2.3
Factorisez à partir de .
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à et résolvez .
Étape 3.4.1
Définissez égal à .
Étape 3.4.2
Résolvez pour .
Étape 3.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 3.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Ajoutez aux deux côtés de l’équation.
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Soustrayez de .
Étape 4.1.2.2
Déplacez à gauche de .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, le point d’inflexion est .
Étape 9