Calcul infinitésimal Exemples

Trouver les points d'inflexion (x^3-3x^2+3x-1)/(x^2+x-2)
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.5
Multipliez par .
Étape 2.1.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.8
Multipliez par .
Étape 2.1.2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.10
Additionnez et .
Étape 2.1.2.11
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.12
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.13
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.14
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.15
Additionnez et .
Étape 2.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Appliquez la propriété distributive.
Étape 2.1.3.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.1
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.1.3.2.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.2.1
Déplacez .
Étape 2.1.3.2.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.2.1.2.2.3
Additionnez et .
Étape 2.1.3.2.1.2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.4.1
Déplacez .
Étape 2.1.3.2.1.2.4.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.4.2.1
Élevez à la puissance .
Étape 2.1.3.2.1.2.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.2.1.2.4.3
Additionnez et .
Étape 2.1.3.2.1.2.5
Déplacez à gauche de .
Étape 2.1.3.2.1.2.6
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.2.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.7.1
Déplacez .
Étape 2.1.3.2.1.2.7.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.7.2.1
Élevez à la puissance .
Étape 2.1.3.2.1.2.7.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.2.1.2.7.3
Additionnez et .
Étape 2.1.3.2.1.2.8
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.2.9
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.2.9.1
Déplacez .
Étape 2.1.3.2.1.2.9.2
Multipliez par .
Étape 2.1.3.2.1.2.10
Déplacez à gauche de .
Étape 2.1.3.2.1.2.11
Multipliez par .
Étape 2.1.3.2.1.2.12
Multipliez par .
Étape 2.1.3.2.1.2.13
Multipliez par .
Étape 2.1.3.2.1.3
Additionnez et .
Étape 2.1.3.2.1.4
Soustrayez de .
Étape 2.1.3.2.1.5
Soustrayez de .
Étape 2.1.3.2.1.6
Additionnez et .
Étape 2.1.3.2.1.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.7.1
Multipliez par .
Étape 2.1.3.2.1.7.2
Multipliez par .
Étape 2.1.3.2.1.7.3
Multipliez par .
Étape 2.1.3.2.1.8
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.1.3.2.1.9
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.9.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.9.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.9.2.1
Déplacez .
Étape 2.1.3.2.1.9.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.9.2.2.1
Élevez à la puissance .
Étape 2.1.3.2.1.9.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.2.1.9.2.3
Additionnez et .
Étape 2.1.3.2.1.9.3
Multipliez par .
Étape 2.1.3.2.1.9.4
Multipliez par .
Étape 2.1.3.2.1.9.5
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.9.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.9.6.1
Déplacez .
Étape 2.1.3.2.1.9.6.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.9.6.2.1
Élevez à la puissance .
Étape 2.1.3.2.1.9.6.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.2.1.9.6.3
Additionnez et .
Étape 2.1.3.2.1.9.7
Multipliez par .
Étape 2.1.3.2.1.9.8
Multipliez par .
Étape 2.1.3.2.1.9.9
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3.2.1.9.10
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1.9.10.1
Déplacez .
Étape 2.1.3.2.1.9.10.2
Multipliez par .
Étape 2.1.3.2.1.9.11
Multipliez par .
Étape 2.1.3.2.1.9.12
Multipliez par .
Étape 2.1.3.2.1.9.13
Multipliez par .
Étape 2.1.3.2.1.9.14
Multipliez par .
Étape 2.1.3.2.1.10
Additionnez et .
Étape 2.1.3.2.1.11
Soustrayez de .
Étape 2.1.3.2.1.12
Additionnez et .
Étape 2.1.3.2.2
Soustrayez de .
Étape 2.1.3.2.3
Additionnez et .
Étape 2.1.3.2.4
Soustrayez de .
Étape 2.1.3.2.5
Soustrayez de .
Étape 2.1.3.2.6
Additionnez et .
Étape 2.1.3.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.3.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.3.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.3.3.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.1.3.3.2
Appliquez la règle de produit à .
Étape 2.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.5
Multipliez par .
Étape 2.2.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.8
Multipliez par .
Étape 2.2.2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.10
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.11
Multipliez par .
Étape 2.2.2.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.13
Additionnez et .
Étape 2.2.3
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4.3
Remplacez toutes les occurrences de par .
Étape 2.2.5
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Déplacez à gauche de .
Étape 2.2.5.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.5.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.5.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.5.1
Additionnez et .
Étape 2.2.5.5.2
Multipliez par .
Étape 2.2.6
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.6.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.6.3
Remplacez toutes les occurrences de par .
Étape 2.2.7
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.7.1
Déplacez à gauche de .
Étape 2.2.7.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.7.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.7.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.7.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.7.5.1
Additionnez et .
Étape 2.2.7.5.2
Multipliez par .
Étape 2.2.8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.1
Appliquez la règle de produit à .
Étape 2.2.8.2
Appliquez la propriété distributive.
Étape 2.2.8.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.1
Réécrivez comme .
Étape 2.2.8.3.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.2.1
Appliquez la propriété distributive.
Étape 2.2.8.3.2.2
Appliquez la propriété distributive.
Étape 2.2.8.3.2.3
Appliquez la propriété distributive.
Étape 2.2.8.3.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.3.1.1
Multipliez par .
Étape 2.2.8.3.3.1.2
Déplacez à gauche de .
Étape 2.2.8.3.3.1.3
Réécrivez comme .
Étape 2.2.8.3.3.1.4
Réécrivez comme .
Étape 2.2.8.3.3.1.5
Multipliez par .
Étape 2.2.8.3.3.2
Soustrayez de .
Étape 2.2.8.3.4
Réécrivez comme .
Étape 2.2.8.3.5
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.5.1
Appliquez la propriété distributive.
Étape 2.2.8.3.5.2
Appliquez la propriété distributive.
Étape 2.2.8.3.5.3
Appliquez la propriété distributive.
Étape 2.2.8.3.6
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.6.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.6.1.1
Multipliez par .
Étape 2.2.8.3.6.1.2
Déplacez à gauche de .
Étape 2.2.8.3.6.1.3
Multipliez par .
Étape 2.2.8.3.6.2
Additionnez et .
Étape 2.2.8.3.7
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.2.8.3.8
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.8.1.2
Additionnez et .
Étape 2.2.8.3.8.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.8.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.3.1
Déplacez .
Étape 2.2.8.3.8.3.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.3.2.1
Élevez à la puissance .
Étape 2.2.8.3.8.3.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.8.3.3
Additionnez et .
Étape 2.2.8.3.8.4
Déplacez à gauche de .
Étape 2.2.8.3.8.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.5.1
Déplacez .
Étape 2.2.8.3.8.5.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.5.2.1
Élevez à la puissance .
Étape 2.2.8.3.8.5.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.8.5.3
Additionnez et .
Étape 2.2.8.3.8.6
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.8.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.8.7.1
Déplacez .
Étape 2.2.8.3.8.7.2
Multipliez par .
Étape 2.2.8.3.8.8
Multipliez par .
Étape 2.2.8.3.8.9
Multipliez par .
Étape 2.2.8.3.8.10
Multipliez par .
Étape 2.2.8.3.8.11
Multipliez par .
Étape 2.2.8.3.8.12
Multipliez par .
Étape 2.2.8.3.9
Soustrayez de .
Étape 2.2.8.3.10
Soustrayez de .
Étape 2.2.8.3.11
Additionnez et .
Étape 2.2.8.3.12
Additionnez et .
Étape 2.2.8.3.13
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.2.8.3.14
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.2.1
Déplacez .
Étape 2.2.8.3.14.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.2.3
Additionnez et .
Étape 2.2.8.3.14.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.4.1
Déplacez .
Étape 2.2.8.3.14.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.4.3
Additionnez et .
Étape 2.2.8.3.14.5
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.6.1
Déplacez .
Étape 2.2.8.3.14.6.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.6.2.1
Élevez à la puissance .
Étape 2.2.8.3.14.6.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.6.3
Additionnez et .
Étape 2.2.8.3.14.7
Déplacez à gauche de .
Étape 2.2.8.3.14.8
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.9
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.9.1
Déplacez .
Étape 2.2.8.3.14.9.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.9.3
Additionnez et .
Étape 2.2.8.3.14.10
Multipliez par .
Étape 2.2.8.3.14.11
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.12
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.12.1
Déplacez .
Étape 2.2.8.3.14.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.12.3
Additionnez et .
Étape 2.2.8.3.14.13
Multipliez par .
Étape 2.2.8.3.14.14
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.15
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.15.1
Déplacez .
Étape 2.2.8.3.14.15.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.15.2.1
Élevez à la puissance .
Étape 2.2.8.3.14.15.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.15.3
Additionnez et .
Étape 2.2.8.3.14.16
Multipliez par .
Étape 2.2.8.3.14.17
Multipliez par .
Étape 2.2.8.3.14.18
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.19
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.19.1
Déplacez .
Étape 2.2.8.3.14.19.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.19.3
Additionnez et .
Étape 2.2.8.3.14.20
Multipliez par .
Étape 2.2.8.3.14.21
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.22
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.22.1
Déplacez .
Étape 2.2.8.3.14.22.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.22.3
Additionnez et .
Étape 2.2.8.3.14.23
Multipliez par .
Étape 2.2.8.3.14.24
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.25
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.25.1
Déplacez .
Étape 2.2.8.3.14.25.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.25.2.1
Élevez à la puissance .
Étape 2.2.8.3.14.25.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.25.3
Additionnez et .
Étape 2.2.8.3.14.26
Multipliez par .
Étape 2.2.8.3.14.27
Multipliez par .
Étape 2.2.8.3.14.28
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.29
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.29.1
Déplacez .
Étape 2.2.8.3.14.29.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.29.2.1
Élevez à la puissance .
Étape 2.2.8.3.14.29.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.29.3
Additionnez et .
Étape 2.2.8.3.14.30
Multipliez par .
Étape 2.2.8.3.14.31
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.32
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.32.1
Déplacez .
Étape 2.2.8.3.14.32.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.32.2.1
Élevez à la puissance .
Étape 2.2.8.3.14.32.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.14.32.3
Additionnez et .
Étape 2.2.8.3.14.33
Multipliez par .
Étape 2.2.8.3.14.34
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.14.35
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.14.35.1
Déplacez .
Étape 2.2.8.3.14.35.2
Multipliez par .
Étape 2.2.8.3.14.36
Multipliez par .
Étape 2.2.8.3.14.37
Multipliez par .
Étape 2.2.8.3.14.38
Multipliez par .
Étape 2.2.8.3.14.39
Multipliez par .
Étape 2.2.8.3.14.40
Multipliez par .
Étape 2.2.8.3.14.41
Multipliez par .
Étape 2.2.8.3.15
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.15.1
Soustrayez de .
Étape 2.2.8.3.15.2
Additionnez et .
Étape 2.2.8.3.16
Additionnez et .
Étape 2.2.8.3.17
Soustrayez de .
Étape 2.2.8.3.18
Soustrayez de .
Étape 2.2.8.3.19
Soustrayez de .
Étape 2.2.8.3.20
Additionnez et .
Étape 2.2.8.3.21
Soustrayez de .
Étape 2.2.8.3.22
Additionnez et .
Étape 2.2.8.3.23
Additionnez et .
Étape 2.2.8.3.24
Additionnez et .
Étape 2.2.8.3.25
Soustrayez de .
Étape 2.2.8.3.26
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.26.1
Multipliez par .
Étape 2.2.8.3.26.2
Multipliez par .
Étape 2.2.8.3.26.3
Multipliez par .
Étape 2.2.8.3.26.4
Multipliez par .
Étape 2.2.8.3.27
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.1
Réécrivez comme .
Étape 2.2.8.3.27.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.2.1
Appliquez la propriété distributive.
Étape 2.2.8.3.27.2.2
Appliquez la propriété distributive.
Étape 2.2.8.3.27.2.3
Appliquez la propriété distributive.
Étape 2.2.8.3.27.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.3.1.1
Multipliez par .
Étape 2.2.8.3.27.3.1.2
Déplacez à gauche de .
Étape 2.2.8.3.27.3.1.3
Réécrivez comme .
Étape 2.2.8.3.27.3.1.4
Réécrivez comme .
Étape 2.2.8.3.27.3.1.5
Multipliez par .
Étape 2.2.8.3.27.3.2
Soustrayez de .
Étape 2.2.8.3.27.4
Appliquez la propriété distributive.
Étape 2.2.8.3.27.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.5.1
Multipliez par .
Étape 2.2.8.3.27.5.2
Multipliez par .
Étape 2.2.8.3.27.6
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.2.8.3.27.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.7.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.7.1.1
Déplacez .
Étape 2.2.8.3.27.7.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.7.1.2.1
Élevez à la puissance .
Étape 2.2.8.3.27.7.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.27.7.1.3
Additionnez et .
Étape 2.2.8.3.27.7.2
Multipliez par .
Étape 2.2.8.3.27.7.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.7.3.1
Déplacez .
Étape 2.2.8.3.27.7.3.2
Multipliez par .
Étape 2.2.8.3.27.7.4
Multipliez par .
Étape 2.2.8.3.27.7.5
Multipliez par .
Étape 2.2.8.3.27.8
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.8.1
Soustrayez de .
Étape 2.2.8.3.27.8.2
Additionnez et .
Étape 2.2.8.3.27.9
Additionnez et .
Étape 2.2.8.3.27.10
Réécrivez comme .
Étape 2.2.8.3.27.11
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.11.1
Appliquez la propriété distributive.
Étape 2.2.8.3.27.11.2
Appliquez la propriété distributive.
Étape 2.2.8.3.27.11.3
Appliquez la propriété distributive.
Étape 2.2.8.3.27.12
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.12.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.12.1.1
Multipliez par .
Étape 2.2.8.3.27.12.1.2
Déplacez à gauche de .
Étape 2.2.8.3.27.12.1.3
Multipliez par .
Étape 2.2.8.3.27.12.2
Additionnez et .
Étape 2.2.8.3.27.13
Appliquez la propriété distributive.
Étape 2.2.8.3.27.14
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.14.1
Multipliez par .
Étape 2.2.8.3.27.14.2
Multipliez par .
Étape 2.2.8.3.27.15
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.2.8.3.27.16
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.16.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.16.1.1
Déplacez .
Étape 2.2.8.3.27.16.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.16.1.2.1
Élevez à la puissance .
Étape 2.2.8.3.27.16.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.27.16.1.3
Additionnez et .
Étape 2.2.8.3.27.16.2
Multipliez par .
Étape 2.2.8.3.27.16.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.16.3.1
Déplacez .
Étape 2.2.8.3.27.16.3.2
Multipliez par .
Étape 2.2.8.3.27.16.4
Multipliez par .
Étape 2.2.8.3.27.16.5
Multipliez par .
Étape 2.2.8.3.27.17
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.27.17.1
Additionnez et .
Étape 2.2.8.3.27.17.2
Additionnez et .
Étape 2.2.8.3.27.18
Additionnez et .
Étape 2.2.8.3.28
Additionnez et .
Étape 2.2.8.3.29
Soustrayez de .
Étape 2.2.8.3.30
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 2.2.8.3.31
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.2.1
Déplacez .
Étape 2.2.8.3.31.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.2.3
Additionnez et .
Étape 2.2.8.3.31.3
Multipliez par .
Étape 2.2.8.3.31.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.5.1
Déplacez .
Étape 2.2.8.3.31.5.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.5.2.1
Élevez à la puissance .
Étape 2.2.8.3.31.5.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.5.3
Additionnez et .
Étape 2.2.8.3.31.6
Multipliez par .
Étape 2.2.8.3.31.7
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.8
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.8.1
Déplacez .
Étape 2.2.8.3.31.8.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.8.3
Additionnez et .
Étape 2.2.8.3.31.9
Multipliez par .
Étape 2.2.8.3.31.10
Multipliez par .
Étape 2.2.8.3.31.11
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.12
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.12.1
Déplacez .
Étape 2.2.8.3.31.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.12.3
Additionnez et .
Étape 2.2.8.3.31.13
Multipliez par .
Étape 2.2.8.3.31.14
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.15
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.15.1
Déplacez .
Étape 2.2.8.3.31.15.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.15.2.1
Élevez à la puissance .
Étape 2.2.8.3.31.15.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.15.3
Additionnez et .
Étape 2.2.8.3.31.16
Multipliez par .
Étape 2.2.8.3.31.17
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.18
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.18.1
Déplacez .
Étape 2.2.8.3.31.18.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.18.3
Additionnez et .
Étape 2.2.8.3.31.19
Multipliez par .
Étape 2.2.8.3.31.20
Multipliez par .
Étape 2.2.8.3.31.21
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.22
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.22.1
Déplacez .
Étape 2.2.8.3.31.22.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.22.3
Additionnez et .
Étape 2.2.8.3.31.23
Multipliez par .
Étape 2.2.8.3.31.24
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.25
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.25.1
Déplacez .
Étape 2.2.8.3.31.25.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.25.2.1
Élevez à la puissance .
Étape 2.2.8.3.31.25.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.25.3
Additionnez et .
Étape 2.2.8.3.31.26
Multipliez par .
Étape 2.2.8.3.31.27
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.28
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.28.1
Déplacez .
Étape 2.2.8.3.31.28.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.28.3
Additionnez et .
Étape 2.2.8.3.31.29
Multipliez par .
Étape 2.2.8.3.31.30
Multipliez par .
Étape 2.2.8.3.31.31
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.32
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.32.1
Déplacez .
Étape 2.2.8.3.31.32.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.32.2.1
Élevez à la puissance .
Étape 2.2.8.3.31.32.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.32.3
Additionnez et .
Étape 2.2.8.3.31.33
Multipliez par .
Étape 2.2.8.3.31.34
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.35
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.35.1
Déplacez .
Étape 2.2.8.3.31.35.2
Multipliez par .
Étape 2.2.8.3.31.36
Multipliez par .
Étape 2.2.8.3.31.37
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.8.3.31.38
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.38.1
Déplacez .
Étape 2.2.8.3.31.38.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.31.38.2.1
Élevez à la puissance .
Étape 2.2.8.3.31.38.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.8.3.31.38.3
Additionnez et .
Étape 2.2.8.3.31.39
Multipliez par .
Étape 2.2.8.3.31.40
Multipliez par .
Étape 2.2.8.3.31.41
Multipliez par .
Étape 2.2.8.3.31.42
Multipliez par .
Étape 2.2.8.3.31.43
Multipliez par .
Étape 2.2.8.3.31.44
Multipliez par .
Étape 2.2.8.3.32
Soustrayez de .
Étape 2.2.8.3.33
Additionnez et .
Étape 2.2.8.3.34
Soustrayez de .
Étape 2.2.8.3.35
Additionnez et .
Étape 2.2.8.3.36
Additionnez et .
Étape 2.2.8.3.37
Soustrayez de .
Étape 2.2.8.3.38
Soustrayez de .
Étape 2.2.8.3.39
Soustrayez de .
Étape 2.2.8.3.40
Additionnez et .
Étape 2.2.8.3.41
Additionnez et .
Étape 2.2.8.3.42
Additionnez et .
Étape 2.2.8.3.43
Soustrayez de .
Étape 2.2.8.3.44
Soustrayez de .
Étape 2.2.8.3.45
Additionnez et .
Étape 2.2.8.3.46
Soustrayez de .
Étape 2.2.8.3.47
Additionnez et .
Étape 2.2.8.3.48
Additionnez et .
Étape 2.2.8.3.49
Additionnez et .
Étape 2.2.8.3.50
Soustrayez de .
Étape 2.2.8.3.51
Additionnez et .
Étape 2.2.8.3.52
Additionnez et .
Étape 2.2.8.3.53
Soustrayez de .
Étape 2.2.8.3.54
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.3.54.1
Factorisez à partir de .
Étape 2.2.8.3.54.2
Factorisez à partir de .
Étape 2.2.8.3.54.3
Factorisez à partir de .
Étape 2.2.8.3.54.4
Factorisez à partir de .
Étape 2.2.8.3.54.5
Factorisez à partir de .
Étape 2.2.8.3.54.6
Factorisez à partir de .
Étape 2.2.8.3.54.7
Factorisez à partir de .
Étape 2.2.8.3.54.8
Factorisez à partir de .
Étape 2.2.8.3.54.9
Factorisez à partir de .
Étape 2.2.8.3.54.10
Factorisez à partir de .
Étape 2.2.8.3.54.11
Factorisez à partir de .
Étape 2.2.8.4
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.4.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.4.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.8.4.1.2
Multipliez par .
Étape 2.2.8.4.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.4.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.8.4.2.2
Multipliez par .
Étape 2.2.8.5
Remettez les termes dans l’ordre.
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Définissez le numérateur égal à zéro.
Étape 3.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Divisez chaque terme dans par .
Étape 3.3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.2.1.1
Annulez le facteur commun.
Étape 3.3.1.2.1.2
Divisez par .
Étape 3.3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1
Divisez par .
Étape 3.3.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Regroupez les termes.
Étape 3.3.2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Factorisez à partir de .
Étape 3.3.2.2.2
Factorisez à partir de .
Étape 3.3.2.2.3
Factorisez à partir de .
Étape 3.3.2.3
Réécrivez comme .
Étape 3.3.2.4
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, et .
Étape 3.3.2.5
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.5.1.1
Multipliez par .
Étape 3.3.2.5.1.2
Élevez à la puissance .
Étape 3.3.2.5.2
Supprimez les parenthèses inutiles.
Étape 3.3.2.6
Factorisez en utilisant le test des racines rationnelles.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.6.1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 3.3.2.6.2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3.3.2.6.3
Remplacez et simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.6.3.1
Remplacez dans le polynôme.
Étape 3.3.2.6.3.2
Élevez à la puissance .
Étape 3.3.2.6.3.3
Multipliez par .
Étape 3.3.2.6.3.4
Élevez à la puissance .
Étape 3.3.2.6.3.5
Multipliez par .
Étape 3.3.2.6.3.6
Additionnez et .
Étape 3.3.2.6.3.7
Multipliez par .
Étape 3.3.2.6.3.8
Additionnez et .
Étape 3.3.2.6.3.9
Additionnez et .
Étape 3.3.2.6.4
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 3.3.2.6.5
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.6.5.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
+--+-+
Étape 3.3.2.6.5.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
-
+--+-+
Étape 3.3.2.6.5.3
Multipliez le nouveau terme du quotient par le diviseur.
-
+--+-+
--
Étape 3.3.2.6.5.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
-
+--+-+
++
Étape 3.3.2.6.5.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
-
+--+-+
++
+
Étape 3.3.2.6.5.6
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
-
+--+-+
++
++
Étape 3.3.2.6.5.7
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
-+
+--+-+
++
++
Étape 3.3.2.6.5.8
Multipliez le nouveau terme du quotient par le diviseur.
-+
+--+-+
++
++
++
Étape 3.3.2.6.5.9
L’expression doit être soustraite du dividende, alors changez tous les signes dans
-+
+--+-+
++
++
--
Étape 3.3.2.6.5.10
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
-+
+--+-+
++
++
--
-
Étape 3.3.2.6.5.11
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
-+
+--+-+
++
++
--
--
Étape 3.3.2.6.5.12
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
-+-
+--+-+
++
++
--
--
Étape 3.3.2.6.5.13
Multipliez le nouveau terme du quotient par le diviseur.
-+-
+--+-+
++
++
--
--
--
Étape 3.3.2.6.5.14
L’expression doit être soustraite du dividende, alors changez tous les signes dans
-+-
+--+-+
++
++
--
--
++
Étape 3.3.2.6.5.15
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
-+-
+--+-+
++
++
--
--
++
+
Étape 3.3.2.6.5.16
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
-+-
+--+-+
++
++
--
--
++
++
Étape 3.3.2.6.5.17
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
-+-+
+--+-+
++
++
--
--
++
++
Étape 3.3.2.6.5.18
Multipliez le nouveau terme du quotient par le diviseur.
-+-+
+--+-+
++
++
--
--
++
++
++
Étape 3.3.2.6.5.19
L’expression doit être soustraite du dividende, alors changez tous les signes dans
-+-+
+--+-+
++
++
--
--
++
++
--
Étape 3.3.2.6.5.20
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
-+-+
+--+-+
++
++
--
--
++
++
--
Étape 3.3.2.6.5.21
Comme le reste est , la réponse finale est le quotient.
Étape 3.3.2.6.6
Écrivez comme un ensemble de facteurs.
Étape 3.3.2.7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.7.1
Factorisez à partir de .
Étape 3.3.2.7.2
Factorisez à partir de .
Étape 3.3.2.8
Appliquez la propriété distributive.
Étape 3.3.2.9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.9.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.9.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2.9.1.2
Additionnez et .
Étape 3.3.2.9.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.2.9.3
Déplacez à gauche de .
Étape 3.3.2.10
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.10.1
Déplacez .
Étape 3.3.2.10.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.10.2.1
Élevez à la puissance .
Étape 3.3.2.10.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2.10.3
Additionnez et .
Étape 3.3.2.11
Soustrayez de .
Étape 3.3.2.12
Additionnez et .
Étape 3.3.2.13
Factorisez en utilisant le théorème du binôme.
Étape 3.3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.1
Définissez égal à .
Étape 3.3.4.2
Soustrayez des deux côtés de l’équation.
Étape 3.3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.1
Définissez égal à .
Étape 3.3.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.2.1
Définissez le égal à .
Étape 3.3.5.2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.2.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.5.2.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.2.2.2.1
Divisez chaque terme dans par .
Étape 3.3.5.2.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.2.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.3.5.2.2.2.2.2
Divisez par .
Étape 3.3.5.2.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.2.2.2.3.1
Divisez par .
Étape 3.3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3.4
Excluez les solutions qui ne rendent pas vrai.
Étape 4
Aucune valeur trouvée qui peut rendre la dérivée seconde égale à .
Aucun point d’inflexion