Calcul infinitésimal Exemples

Évaluer à l'aide de la règle de l'Hôpital limite lorsque x approche de infinity de ( logarithme népérien de 3x+5)/( logarithme népérien de 7x+3+1)
Étape 1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Lorsque le logarithme approche de l’infini, la valeur passe à .
Étape 1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.2
Lorsque le logarithme approche de l’infini, la valeur passe à .
Étape 1.3.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.3.4
L’infini plus ou moins un nombre est l’infini.
Étape 1.3.5
L’infini divisé l’infini est indéfini.
Indéfini
Étape 1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.6
Multipliez par .
Étape 3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.8
Additionnez et .
Étape 3.9
Associez et .
Étape 3.10
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.11
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.11.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.11.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.11.1.2
La dérivée de par rapport à est .
Étape 3.11.1.3
Remplacez toutes les occurrences de par .
Étape 3.11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.11.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.11.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.11.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.11.6
Multipliez par .
Étape 3.11.7
Additionnez et .
Étape 3.11.8
Associez et .
Étape 3.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.13
Additionnez et .
Étape 4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez par .
Étape 5.2
Placez le terme hors de la limite car il est constant par rapport à .
Étape 6
Divisez le numérateur et le dénominateur par la plus forte puissance de dans le dénominateur, qui est .
Étape 7
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Annulez le facteur commun.
Étape 7.1.2
Divisez par .
Étape 7.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun.
Étape 7.2.2
Divisez par .
Étape 7.3
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 7.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 7.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 7.6
Placez le terme hors de la limite car il est constant par rapport à .
Étape 8
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 9
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 9.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 9.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 10
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 11
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Multipliez par .
Étape 11.1.2
Additionnez et .
Étape 11.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Multipliez par .
Étape 11.2.2
Additionnez et .
Étape 11.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Annulez le facteur commun.
Étape 11.3.2
Réécrivez l’expression.
Étape 11.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Annulez le facteur commun.
Étape 11.4.2
Réécrivez l’expression.