Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en évaluant l’intégrale infinie de la dérivée .
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Étape 4.1
Multipliez par .
Étape 4.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 4.3
Multipliez les exposants dans .
Étape 4.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.2
Multipliez par .
Étape 5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.2
Simplifiez
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Associez et .
Étape 7
La fonction si elle est dérivée de l’intégrale de la dérivée de la fonction. Cela est valide selon le théorème fondamental de l’analyse.