Calcul infinitésimal Exemples

Trouver les points critiques (x+1)^5-5x-2
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.5
Additionnez et .
Étape 1.1.2.6
Multipliez par .
Étape 1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Utilisez le théorème du binôme.
Étape 2.2.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Multipliez par .
Étape 2.2.1.2.2
Un à n’importe quelle puissance est égal à un.
Étape 2.2.1.2.3
Multipliez par .
Étape 2.2.1.2.4
Un à n’importe quelle puissance est égal à un.
Étape 2.2.1.2.5
Multipliez par .
Étape 2.2.1.2.6
Un à n’importe quelle puissance est égal à un.
Étape 2.2.1.3
Appliquez la propriété distributive.
Étape 2.2.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.1
Multipliez par .
Étape 2.2.1.4.2
Multipliez par .
Étape 2.2.1.4.3
Multipliez par .
Étape 2.2.1.4.4
Multipliez par .
Étape 2.2.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Soustrayez de .
Étape 2.2.2.2
Additionnez et .
Étape 2.3
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Additionnez et .
Étape 4.1.2.1.2
Élevez à la puissance .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Additionnez et .
Étape 4.1.2.2.2
Soustrayez de .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Additionnez et .
Étape 4.2.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2.1.3
Multipliez par .
Étape 4.2.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Additionnez et .
Étape 4.2.2.2.2
Soustrayez de .
Étape 4.3
Indiquez tous les points.
Étape 5