Calcul infinitésimal Exemples

Trouver les points critiques x^(19/9)+x^(10/9)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.3
Associez et .
Étape 1.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.1
Multipliez par .
Étape 1.1.2.5.2
Soustrayez de .
Étape 1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3.3
Associez et .
Étape 1.1.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.3.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1
Multipliez par .
Étape 1.1.3.5.2
Soustrayez de .
Étape 1.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Associez et .
Étape 1.1.4.2
Associez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez par .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Réécrivez comme .
Étape 4.2.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.3.1
Annulez le facteur commun.
Étape 4.2.2.1.3.2
Réécrivez l’expression.
Étape 4.2.2.1.4
L’élévation de à toute puissance positive produit .
Étape 4.2.2.1.5
Réécrivez comme .
Étape 4.2.2.1.6
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.7
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.7.1
Annulez le facteur commun.
Étape 4.2.2.1.7.2
Réécrivez l’expression.
Étape 4.2.2.1.8
L’élévation de à toute puissance positive produit .
Étape 4.2.2.2
Additionnez et .
Étape 4.3
Indiquez tous les points.
Étape 5