Calcul infinitésimal Exemples

Déterminer la concavité f(x)=x logarithme népérien de x
Étape 1
Find the values where the second derivative is equal to .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.1.2
La dérivée de par rapport à est .
Étape 1.1.1.3
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1
Associez et .
Étape 1.1.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.2.1
Annulez le facteur commun.
Étape 1.1.1.3.2.2
Réécrivez l’expression.
Étape 1.1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3.4
Multipliez par .
Étape 1.1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
La dérivée de par rapport à est .
Étape 1.1.2.3
Additionnez et .
Étape 1.1.3
La dérivée seconde de par rapport à est .
Étape 1.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée seconde égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Aucune solution
Étape 2
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 2.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 4
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
La réponse finale est .
Étape 4.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 5